Code: 23CS3502, 23AM3502, 23DS3502, 23IT3502

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2025

COMPUTER NETWORKS

(Common for CSE, AIML, DS, IT)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART – A

		BL	CO
1.a)	Name any two functions of the Data Link layer in OSI.	L2	CO1
b)	State one advantage and one disadvantage of coaxial cable.	L2	CO1
c)	Mention any two advantages of using CRC over parity check.	L2	CO1
d)	Name any two error situations handled in the simplex protocol for noisy channels.	L2	CO1
e)	Mention two differences between FDMA and TDMA.	L3	CO2
f)	What is the principle of controlled access in MAC?	L3	CO2
g)	What is the main idea of the shortest path routing algorithm?	L3	CO3
h)	List two services provided by the network layer to the transport layer.	L3	CO3
i)	List any two services provided by UDP.	L4	CO4
j)	What are the two types of windows used in TCP flow control?	L4	CO4

PART - B

					Max.
			BL	CO	Marks
	1	UNIT-I			
2	a)	Describe the TCP/IP reference model and	L2	CO1	4 M
		its layers.			
	b)	Compare the scalability of LAN, MAN,	L2	CO1	6 M
		and WAN with real-world examples (e.g.,			
		home, metro city, global bank).			
		OR			
3	a)	Discuss the advantages and disadvantages	L2	CO1	4 M
		of fiber optic cables compared with copper			
		cables.			
	b)	The OSI and TCP/IP models differ in	L2	CO1	6 M
		abstraction levels. Discuss how these			
		differences influence protocol design and			
		interoperability in modern networks.			
		UNIT-II			
4	a)	Write notes on flow control in the Data	L2	CO1	4 M
		Link Layer.			
	b)	Why is the one-bit sliding window	L2	CO1	6 M
		protocol considered as a special case of			
		Go-Back-N? In Go-Back-N ARQ, if the			
		window size is too large, what problems			
		may occur?			
		OR			
5	a)	Compare simplex stop-and-wait and	$L\overline{2}$	CO1	4 M
		simplex noisy channel protocols.			

	1		1			
	b)		L2	CO1	6 M	
		Suggest modifications to the stop-and-wait				
		protocol to improve efficiency.				
		UNIT-III				
6	a)	Why is CDMA more secure than FDMA	L3	CO2	4 M	
		and TDMA? Analyze.				
	b)	Controlled access eliminates collisions,	L3	CO2	6 M	
		but why is it less common in modern				
		LANs compared to random access?				
				1		
		OR				
7	a)	Explain Slotted ALOHA and compare it	L3	CO2	4 M	
		with Pure ALOHA.				
	b)	Define CSMA. Explain collision detection	L3	CO2	6 M	
		with suitable example.				
		UNIT-IV				
8	a)	Explain the flooding algorithm and its	L3	CO3	4 M	
		limitations.				
	b)	Explain the implementation of	L3	CO3	6 M	
		connectionless service in the network				
		layer.				
	OR					
9	a)	Compare distance vector and link state	L3	CO3	4 M	
		routing in terms of convergence and				
		scalability.				
	b)	Compare the Virtual circuit and Datagram	L3	CO3	6 M	
		circuit network.				
	1	1	1	L		

	UNIT-V					
10	a)	Analyse the fields of TCP header format.	L4	CO4	5 M	
	b)	Analyse the E-mail architecture.	L4	CO4	5 M	
	OR					
11	a)	Compare and Contrast local login and remote login in terms of security and efficiency.	L4	CO4	4 M	
	b)	Analyse DNS architecture with its record types.	L4	CO4	6 M	