Code: 23CS5401

II B.Tech - II Semester - Minor Examinations - MAY 2025

COMPUTATIONAL THINKING (MINOR in COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	What is the role of decomposition in	L1	CO1
	computational problem-solving?		
1.b)	Draw the flowchart for swapping two variables	L2	CO1
	without a temporary variable.		
1.c)	Draw a flowchart to find the square root of a	L2	CO1
	number.		
1.d)	Find the smallest divisor of 91.	L1	CO1
1.e)	What is the most efficient way to reverse an	L1	CO1
	array in-place without using extra space?		
1.f)	If given an array $A = [12, 45, 23, 51, 19]$	L2	CO1
	determine the maximum element using only one		
	traversal.		
1.g)	What is the key idea behind the two-way merge	L1	CO1
	process in merging two sorted lists?		

1.h)	Why does Binary Search require a sorted array?		CO1
	Explain with an example.		
1.i)	What is the basic approach used in keyword	L1	CO1
	searching within a text document?		
1.j)	What is the advantage of using a sub linear	L1	CO1
	pattern search over a linear search in large text		
	processing applications?		

PART - B

		BL	CO	Max.	
			DL		Marks
	UNIT-I				
2	a)	Explain how abstraction and pattern	L2	CO1	5 M
		recognition help in designing efficient			
		algorithms. Provide an example with a			
		step-by-step problem-solving approach			
	b)	Write an algorithm and draw a flowchart	L3	CO2	5 M
		to exchange the values of two variables			
		using XOR operation. Discuss its			
		computational advantages.			
		OR			
3	a)	Implement an algorithm for computing	L3	CO2	5 M
		the factorial of a number.			
	b)	Given an integer, develop an efficient	L3	CO2	5 M
		algorithm to reverse its digits, ensuring it			
		handles both positive and negative			
		numbers.			

	UNIT-II				
4	a)	Develop an optimized algorithm to	L3	CO2	5 M
		compute the prime factors of a number.			
	b)	Implement Euclidean algorithm for	L3	CO2	5 M
		computing the GCD of two numbers.			
		OR			
5	a)	How does the Linear Congruential	L3	CO2	5 M
		Generator (LCG) work? Implement an			
		LCG-based random number generation			
		algorithm.			
	b)		L3	CO2	5 M
		of a number using trail division method.			
	T	UNIT-III		, ,	
6	a)	Write an algorithm to generate a	L3	CO3	5 M
		histogram for character frequency in a			
		given string.			
	b)	Develop an algorithm to return both the	L3	CO3	5 M
		maximum and second maximum values.			
	T	OR		Т	
7	a)	Explain duplicate removal algorithm with	L2	CO ₃	5 M
		an example.	_		
	b)	Implement partitioning of an array	L3	CO3	5 M
		algorithm.			
UNIT-IV					
8	a)	Analyze two-way Merge algorithm.	L4	CO4	5 M
	b)	Compare Linear Search with Binary	L4	CO4	5 M
		Search.			
	OR				
9	a)	Analyze sorting by insertion algorithm to	L4	CO4	5 M

		arrange given set of elements in an			
		ascending order [14, 33, 27, 11, 35, 19].			
	b)	Compare Selection Sort with Bubble Sort	L4	CO4	5 M
		in terms of efficiency.			
		UNIT-V			
10	a)	Write an algorithm for finding	L2	CO3	5 M
		occurrences of a keyword in a given text			
		document.			
	b)	Explain the sub-linear pattern searching	L2	CO3	5 M
		algorithm with an example.			
	OR				
11	a)	Apply keyword searching algorithm so	L3	CO3	5 M
		that it will terminate on finding the first			
		complete word-match.			
	b)	Construct text-line editing algorithm and	L3	CO3	5 M
		explain with an example.			