Code: 23EE6401

II B.Tech - II Semester - Honors Examinations - MAY 2025

BATTERY MANAGEMENT SYSTEM (HONORS in ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Differentiate between a cell and a battery.	L2	CO1
1.b)	List the type of battery geometry.	L1	CO1
1.c)	Distinguish between positive and negative plates of a lead acid battery.	L3	CO1
1.d)	Explain the internal resistance of a Lead Acid battery.	L3	CO2
1.e)	Sketch the discharge process of a Sodium Metal Chloride Battery.	L3	CO2
1.f)	Compare and contrast NiCd and Li Ion Battery with respect to the voltage.	L4	CO2
1.g)	Discuss the charging infrastructure.	L3	CO3
1.h)	List the disadvantages of fast charging.	L4	CO3
1.i)	Define charge equalization.	L1	CO3
1.j)	List the power levels of inductive charging	L1	CO3

PART - B

			BL	СО	Max. Marks			
UNIT-I								
2	a)	Discuss the term energy stored in a	L3	CO1	5 M			
		battery with relevant diagrams.						
	b)	Describe the need for cooling methods in	L2	CO1	5 M			
		a battery.						
	OR							
3	a)	Explain the concept of self-discharge of	L4	CO1	5 M			
		batteries with a neat diagram.						
	b)	Discuss the advantages and	L3	CO1	5 M			
		disadvantages of cylindrical cells.						
	Ι.	UNIT-II						
4	a)	Illustrate the characteristics of Nickel	L3	CO2	5 M			
		Cadmium batteries.						
	b)	Explain the Nickel Hydride Battery.	L2	CO2	5 M			
	T	OR		I				
5	Dif	ferentiate between Nickel and Lead Acid	L2	CO2	10 M			
	Bat	teries.						
	ı	UNIT-III		I				
6	Dis	cuss the working of a Sodium Sulphur	L3	CO2	10 M			
	batt	ery with neat diagrams and relevant						
	equ	ations.						
	OR							
7	Coı	npare and contrast between Sodium	L3	CO2	10 M			
	Sul	phur and Sodium Metal Battery.						

UNIT-IV								
8	a)	Explain the power level at domestic	L2	CO3	5 M			
		charging with relevant equations and						
		diagrams.						
	b)	Discuss the charging station with a circuit	L3	CO3	5 M			
		diagram.						
	OR							
9	Exp	plain the advantages and disadvantages of	L3	CO3	10 M			
	battery swapping.							
	UNIT-V							
10	Dis	cuss the need for soft switching of power	L3	CO3	10 M			
	elec	etronic components in inductive charging.						
	OR							
11	Dis	cuss the microprocessor-based charging	L3	CO3	10 M			
	circ	euit.						