Code: 23BS1303

II B.Tech - I Semester – Supplementary Examinations - MAY 2025

NUMERICAL METHODS AND TRANSFORM TECHNIQUES

(MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

PART - A

1.a)	If the first two approximations x_0 and x_1 are roots of						
	$x^3 - 2x - 5 = 0$ are 2 and 3, then find x_3 by regula falsi						
	method.						
b)	Write Newton's forward and backward interpolation						
	formulas.						
c)	Write first and second order derivatives using Newton's						
	backward difference formula at $x = x_n$.						
d)	f(x) is given by,						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	f(x) = 1 = 0.8 = 0.5						
	$\begin{array}{c cccc} x & 0 & 0.5 & 1 \\ \hline f(x) & 1 & 0.8 & 0.5 \end{array}$ Then evaluate of $\int_0^1 f(x) dx$ by Trapezoidal rule.						
e)	If $\frac{dy}{dx} = x - y$, $y(0) = 2$, $h = 0.2$, then find the value of						
	y (0.2) using Euler's method.						
f)	If $\frac{dy}{dx} = x + y^2$, $y(0) = 1$ and $h = 0.1$, then find the value						
	of k_2 using Runge -Kutta method.						

g)	Find the Laplace transform of $e^{-3t}(2\cos 5t + 3\sin 5t)$
h)	Find the inverse Laplace transform of $\frac{3(s^2-2)^2}{2s^5}$
i)	If $f(x) = x $ in $(-\pi, \pi)$, then find a_0 .
j)	Find the Fourier cosine transform of $f(x) = e^{-5x}$.

PART - B

										Max.
										Marks
	UNIT-I									
2	a)	By using the bisection method, find an approximate						5 M		
		root of the equation $sin x = \frac{1}{x}$, that lies between								
		x =	1 and	1 x = 1.5	5. Carry	out com	putation	s upto		
		5 th	stage	•						
	b)	Fine	d by	Newton	's meth	od, the	real ro	ot of	the	5 M
	equation $3x = cosx + 1$.									
					O	R				
3	From the following table, estimate the number of						10 M			
	stu	dents	who o	obtained	marks b	etween 4	40 and 4	-5.		
		Mar	·ks	30-40	40-50	50-60	60-70	70-80		
		No.	of	31	42	51	35	31		
		Stud	dents							
	UNIT-II							<u></u>		
4	Fir	d the	first a	and seco	nd deriv	ative of	f(x) at :	$\overline{x=1}$.	5 if	10 M
	Find the first and second derivative of $f(x)$ at $x = 1.5$ if $\begin{vmatrix} 10 \end{vmatrix}$									
		X	1.5	2.0	2.5	3.0	3.5	4.0		
		f(x)	3.375	7.000	13.625	24.000	38.875	59.00	00	
				1	<u> </u>		l	I		

		OR							
5	a)	Use Simson's $\frac{1}{3}$ rd rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking	5 M						
		seven ordinates.							
	b)	$\int_{0}^{2\pi} \frac{1+x}{1+x} d\sin \theta = 0$	5 M						
		subintervals.							
		UNIT-III							
6	a)	Employ Taylor's method to obtain approximate	5 M						
		value of y at $x = 0.2$ for the differential equation							
		$\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$. Compare the numerical							
		solution obtained with the exact solution.							
	b)	Find the value of y for $x = 0.1$ by Picard's method,	5 M						
		given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y (0) =1.							
	OR								
7	App	ply Milne's method, to find a solution of	10 M						
	the	differential equation $\frac{dy}{dx} = x - y^2$ in the range							
	0 ≤	$x \le 1$ for the boundary condition $y = 0$ and $x = 0$.							
		UNIT-IV							
8	a)	Find the Laplace transform of $\left(\sqrt{t} - \frac{1}{\sqrt{t}}\right)^3$.	5 M						
	b)	Evaluate $L\left\{e^{-t}\int_0^t \frac{\sin t}{t} dt\right\}$.	5 M						
	OR								
9	a)	Find inverse Laplace transform of $\frac{5s+3}{(s-1)(s^2+2s+5)}$	5 M						
	b)	Find the inverse Laplace transform of $\frac{s}{(s^2+a^2)^2}$.	5 M						

UNIT-V							
10	a)	Find the Fourier series of the function					
		$\int_{f(x)} \int_{-\infty} (0, if - \pi \le x \le 0)$					
		$f(x) = \begin{cases} 0, if -\pi \le x \le 0\\ sinx, if \ 0 \le x \le \pi \end{cases}.$					
	b)	Find the half-range cosine series expansion of					
		f(x) = x in [0,2].					
OR							
11	a)	Express $f(x) = f(x) = \begin{cases} 1, & 0 \le x \le \pi \\ 0, & x > \pi \end{cases}$ as a Fourier					
		sine integral and hence evaluate					
		$\int_0^\infty \frac{1-\cos(\pi\lambda)}{\lambda} \sin(x\lambda) d\lambda.$					
	b) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.						