I B.Tech Regular Examinations, May/Jun 2008 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronic Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Mechatronics, Computer Science & Systems Engineering, Electronics & Telematics, Metallurgy & Material Technology, Electronics & Computer Engineering, Production Engineering, Aeronautical Engineering, Instrumentation & Control Engineering, Bio-Technology and Automobile Engineering)
 Time: 3 hours

> Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Solve
$$y(2x^2y + e^x) dx = (e^x + y^3) dy$$
.

(b) Suppose that an object is heated to 300^{0} F and allowed to cool in a room whose air temperature is 80^{0} F, if after 10 minutes the temperature of the object is 250^{0} F What will be its temperature after 20 minutes. [8+8]

2. (a) Solve
$$(4D^2 - 4D + 1) y = 100$$

(b) Solve $(D^3 - 6D^2 + 11D - 6) y = e^{-2x} + e^{-3x}$. [8+8]

- 3. (a) Find three positive numbers whose sum is 100 and whose product is maximum.
 - (b) If $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$ prove that 'c' of the Cauchy's generalized mean value theorem is the geometric mean of 'a' and 'b' for any a > 0, b > 0. [8+8]
- 4. (a) Find the radius of curvature of $\sqrt{a} = \sqrt{r} \cos \frac{\theta}{2} at(r, \theta)$.
 - (b) Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b} = 1$ where $a^2 + b^2 = 4$. [8+8]
- 5. (a) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx dy dz$.
 - (b) Find the surface area of the solid generated by revolving the arc of the parabola $x^2 = 12y$, bounded by its latus rectum about y-axis. [8+8]
- 6. (a) Examine the convergence of $\frac{1}{3}x^2 + \frac{1.2}{3.5}x^3 + \frac{1.2.3}{3.5.7}x^4 + \dots, (x > 0)$ (b) Examine the convergence of $\sum \frac{[(n+1)!]^2x^{n-1}}{n}, (x > 0)$ [8+8]
- 7. Verify Stoke's theorem for $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ over the box bounded by the planes x = 0, x = a, y = 0, y = b, z = c. [16]
- 8. (a) Using Laplace transform, solve $(D^2 + 2D 3)y = \sin x, y(0) = y'(0) = 0.$

Set No. 1

(b) Using Laplace transform evaluate $\int_{0}^{\infty} (e^{-t} - e^{-2t})/t dt.$ [8+8]

I B.Tech Regular Examinations, May/Jun 2008 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronic Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Mechatronics, Computer Science & Systems Engineering, Electronics & Telematics, Metallurgy & Material Technology, Electronics & Computer Engineering, Production Engineering, Aeronautical Engineering, Instrumentation & Control Engineering, Bio-Technology and Automobile Engineering)
 Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

1. (a) Solve
$$x \frac{dy}{dx} + y = x^3 y^6$$

- (b) A bacterial culture, growing exponentially, increases from 200 to 500 grams in the period from 6 a.m. to 9 a.m. How many grams will be present at noon. [8+8]
- 2. (a) Solve $(D^2 4D + 13) y = e^{2x}$

(b) Solve
$$(D^2 + 16) y = e^{-4x}$$
. [8+8]

- 3. (a) Find the region in which $f(x) = 1 4x x^2$ is increasing and the region in which it is decreasing using Mean Value Theorem .
 - (b) Find the minimum value of $x^2 + y^2 + z^2$ given x + y + z = 3a. [8+8]
- 4. (a) Show that the evolute of the parabola $y^2 = 4ax$ is $27ay^2 = 4(x 2a)^3$.
 - (b) Find the equation of the circle of curvature of the curve $x = a(\cos \theta + \theta \sin \theta), \quad y = a(\sin \theta - \theta \cos \theta)$ [8+8]

5. (a) Evaluate
$$\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+\log y} e^{x+y+z} dz dy dx$$
.

- (b) Find the volume of the solid that results when the region enclosed by the curve ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (0 < b < a) rotates about major axis. [8+8]
- 6. (a) Test the convergence of ∑ (√n³ + 1 - √n³)
 (b) Test the convergence of ∑ (xⁿ / nⁿ⁻¹) , (x > 0) [8+8]
- 7. Verify Stoke's theorem for $\vec{F} = (2x y) \vec{i} yz^2 \vec{j} y^2 z \vec{k}$ where S is the upper half surface $x^2 + y^2 + z^2 = 1$ of the sphere and C is its boundary. [16]

Set No. 2

- 8. (a) Using Laplace transform, evaluate $\int_{0}^{\infty} \frac{(\text{cosat-cosbt})}{t} dt.$
 - (b) Using Laplace transform, solve y (t) = 1 e^{-t} + \int_{0}^{t} y (t u) sin u du. [8+8]

Set No. 3

I B.Tech Regular Examinations, May/Jun 2008 MATHEMATICS-I

 (Common to Civil Engineering, Electrical & Electronic Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Mechatronics, Computer Science & Systems Engineering, Electronics & Telematics, Metallurgy & Material Technology, Electronics & Computer Engineering, Production Engineering, Aeronautical Engineering, Instrumentation & Control Engineering, Bio-Technology and Automobile Engineering)
 Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve $x^3 \sec^2 y \frac{dy}{dx} + 3x^2 \tan y = \cos x$.
 - (b) A bacterial culture, growing exponentially, increases from 100 to 400 grams in 10 hours. How much was present after 3 hours? [8+8]
- 2. (a) Solve $(4D^2 4D + 1) y = 100$ (b) Solve $(D^3 - 6D^2 + 11D - 6) y = e^{-2x} + e^{-3x}$. [8+8]
- 3. (a) Find the maxima and minima of the function $f(x) = 2(x^2 y^2) x^4 + y^4$.
 - (b) Prove using Mean Value theorem $|\sin u \sin v| \le |u \nu|$. [8+8]
- 4. (a) Find the circle of curvature at (0, 0) for $x + y = x^2 + y^2 + x^3$.
 - (b) Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ [8+8]
- 5. (a) Find the volume of the solid when ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (0 < b < a) rotates about minor axis.
 - (b) By transforming into polar coordinates evaluate $\iint \frac{x^2y^2}{x^2+y^2} dxdy$ over the annular region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$, with b>a. [8+8]
- 6. (a) Examine the convergence of $\sum 1/n(2n+1)$
 - (b) Examine the convergence of $\frac{1}{1.3.5} - \frac{1}{3.5.7} + \frac{1}{5.7.9} - \frac{1}{7.9.11} + \dots$ [8+8]
- 7. Evaluate $\iint_{S} \vec{F} \cdot d\vec{S}$, if $\vec{F} = yz \,\vec{i} + 2y^2 \vec{j} + xz^2 \,\vec{k}$ and S is the surface of the cylinder $x^2 + y^2 = 9$ contained in the first octant between the planes z = 0 and z = 2. [16]
- 8. (a) Using Laplace transform, solve ($D^2 + 5D - 6$) $y = x^2 e^{-x}$, y(0) = a, y'(0) = b.

Set No. 3

(b) Using Laplace transform, evaluate $\int_{0}^{\infty} [(\cos 5t - \cos 3t) / t] dt.$ [8+8]

I B.Tech Regular Examinations, May/Jun 2008 MATHEMATICS-I

(Common to Civil Engineering, Electrical & Electronic Engineering, Mechanical Engineering, Electronics & Communication Engineering, Computer Science & Engineering, Chemical Engineering, Electronics & Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics & Control Engineering, Mechatronics, Computer Science & Systems Engineering, Electronics & Telematics, Metallurgy & Material Technology, Electronics & Computer Engineering, Production Engineering, Aeronautical Engineering, Instrumentation & Control Engineering, Bio-Technology and Automobile Engineering) Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Solve x dx + y dy = $\frac{a^2(xdy-ydx)}{x^2+y^2}$
 - (b) The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $11/_2$ hours? [8+8]
- 2. Solve $(D^2 + 1) y = \sin x \sin 2x + e^x x^2$. [10]
- (a) Using Rolle's theorem show that $g(x) = 8x^3-6x^2 2x + 1$ has a zero between 0 3. and 1.
 - (b) If $u = \frac{yz}{x}$ $v = \frac{xz}{y}$, $w = \frac{xy}{z}$ find $\frac{\partial(u,v,w)}{\partial(x,u,z)}$. [8+8]
- (a) Find the radius of curvature of $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$. 4. (b) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$ where $a^m b^n = c^{m+n}$. [8+8]

(a) By changing the order of integration, evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{a^2-x^2-y^2} \, dy dx$. 5.

- (b) Evaluate $\iiint_{p} (x + y + z) dz dy dx$ where R is the region bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.[8+8]
- 6. (a) Examine the convergence or divergence of $\sum \frac{x^{2n}}{(n+2)}\sqrt{(n+2)}$, (x > 0)
 - (b) Examine the convergence of $\sum 1 / (n^{3/2} + n + 1)$ [8+8]
- (a) Prove that $grad(\vec{F}\cdot\vec{G}) = \vec{F}\times(\nabla\times\vec{G}) + \vec{G}\times(\nabla\times\vec{F}) + (\vec{F}\cdot\nabla)\vec{G} + (\vec{G}\cdot\nabla)\vec{F}$ 7. (b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = 3xy \,\vec{i} - y^2 \,\vec{j}$ and C is the parabola $y = 2x^2$ from (0,0) to (1,2)[8+8]
- (a) Find $L^{-1} [e^{-2s}/(s^2 + 4s + 5)]$ 8.

Set No. 4

(b) Using Laplace transform, evaluate $\int_{0}^{\infty} e^{-at} \sin^{2} t / t dt.$ [8+8]