
Coding 1

Coding and Unit Testing

UNIT -5

Coding 2

Coding

 Goal is to implement the design in best
possible manner

 Coding affects testing and maintenance

 As testing and maintenance costs are high,
aim of coding activity should be to write code
that reduces them

 Hence, goal should not be to reduce coding
cost, but testing and maint cost, i.e. make
the job of tester and maintainer easier

Coding 3

Coding…

 Code is read a lot more

 Coders themselves read the code many times for
debugging, extending etc

 Maintainers spend a lot of effort reading and
understanding code

 Other developers read code when they add to
existing code

 Hence, code should be written so it is easy to
understand and read, not easy to write!

Coding 4

Coding…

 Having clear goal for coding will help achieve
them

 Weinberg experiment showed that coders
achieve the goal they set
 Diff coders were given the same problem

 But different objectives were given to diff
programmers – minimize effort, min size, min
memory, maximize clarity, max output clarity

 Final programs for diff programmers generally
satisfied the criteria given to them

Coding 5

Weinberg experiment..

Resulting Rank (1=best)

O1 o2 o3 o4 o5

Minimize Effort (o1)

Minimize prog size (o2)

Minimize memory (o3)

Maximize code clarity (o4)

Maximize output clarity (o5)

1 4 4 5 3

2-3 1 2 3 5

5 2 1 4 4

4 3 3 2 2

2-3 5 5 1 1

Coding 6

Programming Principles

 The main goal of the programmer is write
simple and easy to read programs with few
bugs in it

 Of course, the programmer has to develop it
quickly to keep productivity high

 There are various programming principles
that can help write code that is easier to
understand (and test…)

Coding 7

Structured Programming

 Structured programming started in the
70s, primarily against indiscriminate use
of control constructs like gotos

 Goal was to simplify program structure
so it is easier to argue about programs

 Is now well established and followed

Coding 8

Structured Programming…

 A program has a static structure which is the
ordering of stmts in the code – and this is a
linear ordering

 A program also has dynamic structure –order
in which stmts are executed

 Both dynamic and static structures are
ordering of statements

 Correctness of a program must talk about the
dynamic structure

Coding 9

Structured Programming…

 To show a program as correct, we must show that its
dynamic behavior is as expected

 But we must argue about this from the code of the
program, i.e. the static structure

 I.e program behavior arguments are made on the
static code

 This will become easier if the dynamic and static
structures are similar

 Closer correspondence will make it easier to
understand dynamic behavior from static structure

 This is the idea behind structured programming

Coding 10

Structured Programming…

 Goal of structured programming is to
write programs whose dynamic
structure is same as static

 I.e. stmts are executed in the same
order in which they are present in code

 As stmts organized linearly, the
objective is to develop programs whose
control flow is linear

Coding 11

Structured Programming…

 Meaningful programs cannot be written as
seq of simple stmts

 To achieve the objectives, structured
constructs are to be used

 These are single-entry-single-exit constructs

 With these, execution of the stmts can be in
the order they appear in code

 The dynamic and static order becomes same

Coding 12

Structured Programming

 Main goal was to ease formal verification of
programs

 For verification, the basic theorem to be
shown for a program S is of the form
 P {S} Q

 P – precondition that holds before S executes

 Q – postcondition that holds after S has
executed and terminated

Coding 13

Structured Prog – composing
proofs

 If a program is a sequence of the type S1; S2
then it is easier to prove from proofs of S1
and S2

 Suppose we have shown P1 {S1} Q1 and R2
{S2} Q2

 Then, if we can show Q1 => R2, then we can
conclude P1 {S1; S2} Q2

 So Structured Prog allows composing proofs
of larger programs from proofs of its parts

Coding 14

Structured Programming…

 Each structured construct should also have a
clear behavior

 Then we can compose behavior of stmts to
understand behavior of programs

 Hence, arbitrary single-entry-single-exit
constructs will not help

 It can be shown that a few constructs like
while, if, and sequencing suffice for writing
any type of program

Coding 15

Structured Programming…

 SP was promulgated to help formal
verification of programs

 Without linear flow, composition is hard and
verification difficult

 But, SP also helps simplify the control flow of
programs, making them easier to understand
and argue about

 SP is an accepted and standard practice
today – modern languages support it well

Coding 16

Information Hiding

 Software solutions always contain data
structures that hold information

 Programs work on these DS to perform the
functions they want

 In general only some operations are
performed on the information, i.e. the data is
manipulated in a few ways only

 E.g. on a bank’s ledger, only debit, credit,
check cur balance etc are done

Coding 17

Information Hiding…

 Information hiding – the information should
be hidden; only operations on it should be
exposed

 I.e. data structures are hidden behind the
access functions, which can be used by
programs

 Info hiding reduces coupling

 This practice is a key foundation of OO and
components, and is also widely used today

Coding 18

Some Programming Practices

 Control constructs: Use only a few
structured constructs (rather than using
a large no of constructs)

 Goto: Use them sparingly, and only
when the alternatives are worse

 Info hiding: Use info hiding

 Use-defined types: use these to make
the programs easier to read

Coding 19

Some Programming Practices..

 Nesting: Avoid heavy nesting of if-then-
else; if disjoint nesting can be avoided

 Module size: Should not be too large –
generally means low cohesion

 Module interface: make it simple

 Robustness: Handle exceptional
situations

 Side effects: Avoid them, document

Coding 20

Some Programming Practices..

 Empty catch block: always have some default
action rather than empty

 Empty if, while: bad practice

 Read return: should be checked for
robustness

 Return from finally: should not return from
finally

 Correlated parameters: Should check for
compatibility

Coding 21

Coding Standards

 Programmers spend more time reading code than
writing code

 They read their own code as well as other
programmers code

 Readability is enhanced if some coding conventions
are followed by all

 Coding standards provide these guidelines for
programmers

 Generally are regarding naming, file organization,
statements/declarations, …

 Some Java conventions discussed here

Coding 22

Coding Standards…

 Naming conventions
 Package name should be in lower case

(mypackage, edu.iitk.maths)
 Type names should be nouns and start with

uppercase (Day, DateOfBirth,…)
 Var names should be nouns in lowercase; vars

with large scope should have long names; loop
iterators should be i, j, k…

 Const names should be all caps
 Method names should be verbs starting with lower

case (eg getValue())
 Prefix is should be used for boolean methods

Coding 23

Coding Standards…

 Files

 Source files should have .java extension

 Each file should contain one outer class
and the name should be same as file

 Line length should be less than 80; if
longer continue on another line…

Coding 24

Coding Standards…

 Statements
 Vars should be initialized where declared in the

smallest possible scope

 Declare related vars together; unrelated vars
should be declared separately

 Class vars should never be declared public

 Loop vars should be initialized just before the loop

 Avoid using break and continue in loops

 Avoid executable stmts in conditionals

 Avoid using the do… while construct

Coding 25

Coding Standards…

 Commenting and layout
 Single line comments for a block should be

aligned with the code block

 There should be comments for all major
vars explaining what they represent

 A comment block should start with a line
with just /* and end with a line with */

 Trailing comments after stmts should be
short and on the same line

Coding 26

Incrementally Developing
Code

 Coding starts when specs for modules from
design is available

 Usually modules are assigned to
programmers for coding

 In top-down development, top level modules
are developed first; in bottom-up lower levels
modules

 For coding, developers use different
processes; we discuss some here

Coding 27

An Incremental Coding Process

 Basic process: Write code for the
module, unit test it, fix the bugs

 It is better to do this incrementally –
write code for part of functionality, then
test it and fix it, then proceed

 I.e. code is built code for a module
incrementally

Coding 28

Coding 29

Test Driven Development

 This coding process changes the order
of activities in coding

 In TDD, programmer first writes the
test scripts and then writes the code to
pass the test cases in the script

 This is done incrementally

 Is a relatively new approach, and is a
part of the extreme programming (XP)

Coding 30

TDD…

 In TDD, you write just enough code to pass
the test

 I.e. code is always in sync with the tests and
gets tested by the test cases
 Not true in code first approach, as test cases may

only test part of functionality

 Responsibility to ensure that all functionality
is there is on test case design, not coding

 Help ensure that all code is testable

Coding 31

TDD…

 Focus shifts to how code will be used as test
cases are written first
 Helps validate user interfaces specified in the

design
 Focuses on usage of code

 Functionality prioritization happens naturally
 Has possibility that special cases for which

test cases are not possible get left out
 Code improvement through refactoring will be

needed to avoid getting a messy code

Coding 32

Coding 33

Pair Programming

 Also a coding process that has been proposed
as key practice in XP

 Code is written by pair of programmers rather
than individuals
 The pair together design algorithms, data

structures, strategies, etc.
 One person types the code, the other actively

reviews what is being typed
 Errors are pointed out and together solutions are

formulated
 Roles are reversed periodically

Coding 34

Pair Programming…

 PP has continuous code review, and reviews
are known to be effective

 Better designs of algos/DS/logic/…

 Special conditions are likely to be dealt with
better and not forgotten

 It may, however, result in loss of productivity

 Ownership and accountability issues are also
there

 Effectiveness is not yet fully known

Coding 35

Managing Evolving Code

 During coding process, code written by
a programmer evolves

 Code by different programmers have to
be put together to form the system

 Besides normal code changes,
requirement changes also cause chg.

 Evolving code has to be managed

Coding 36

Source Code Control and Built

 Source code control is an essential step
programmers have to do

 Generally tools like CVS, VSS are used
 A tool consists of repository, which is a

controlled directory structure
 The repository is the official source for all the

code files
 System build is done from the files in the

repository only
 Tool typically provides many commands to

programmers

Coding 37

Source code control…

 Checkout a file: by this a programmer gets a
local copy that can be modified

 Check in a file: changed files are uploaded in
the repository and change is then available to
all

 Tools maintain complete change history and
all older versions can be recovered

 Source code control is an essential tool for
developing large projects and for coordination

Coding 38

Refactoring

 As code evolves, the design becomes
more complex

 Refactoring is a technique to improve
existing code by improving its design
(i.e. the internal structure)

 In TDD, refactoring is a key step

 Refactoring is done generally to reuce
coupling or increase cohesion

Coding 39

Refactoring…

 Involves changing code to improve
some design property

 No new functionality is added

 To mitigate risks associated with
refactoring two golden rules
 Refactor in small steps

 Have test scripts available to test that the
functionality is preserved

Coding 40

Refactoring…

 With refactoring code is continually
improving; refactoring cost is paid by
reduced maint effort later

 There are various refactoring patterns
that have been proposed

 A catalog of refactorings and how to do
them is available online

Coding 41

Refactoring…

 “Bad smells” that suggest that refactoring
may be desired
 Duplicate code

 Long method

 Long class

 Long parameter list

 Swith statement

 Speculative generality

 Too much communication between objects

 …

Coding 42

Unit Testing

Coding 43

UT and Verification

 Code has to be verified before it can be used
by others

 Here we discuss only verification of code
written by a programmer (system verification
is discussed in testing)

 There are many different techniques – two
most commonly used are unit testing and
inspection

 We will discuss these here

Coding 44

Unit Testing

 Is testing, except the focus is the module a
programmer has written

 Most often UT is done by the programmer
himself

 UT will require test cases for the module –
will discuss in testing

 UT also requires drivers to be written to
actually execute the module with test cases

 Besides the driver and test cases, tester
needs to know the correct outcome as well

Coding 45

Unit Testing…

 If incremental coding is being done, then
complete UT needs to be automated

 Otherwise, repeatedly doing UT will not be
possible

 There are tools available to help

 They provide the drivers

 Test cases are programmed, with outcomes being
checked in them

 I.e. UT is a script that returns pass/fail

Coding 46

Unit Testing…

 Testing a module f() has following steps
 Set the system state as needed

 Set value of parameters suitably

 Invoke the function f() with parms

 Compare result of f() with expected results

 Declare whether the test case succeeded
or failed

 Test frameworks automate all this

Coding 47

Unit testing of Classes

 Is same as before, except the system state is
generally the state of the object

 Many frameworks exist for OO – Junit is the
most popular; others for other languages also
exist

 Each testcase is a method, in which the
desired sequence of methods is executed;
assertions used to check the outcome

 The script will declare if all tests succeeded,
and if not which ones have failed

Coding 48

Unit Testing…

 There are frameworks like Junit that can be
used for testing Java classes

 Each test case is a method which ends with
some assertions

 If assertions hold, the test case pass,
otherwise it fails

 Complete execution and evaluation of the test
cases is automated

 For enhancing the test script, additional test
cases can be added easily

Coding 49

Code Inspections

 Code inspection is another technique that is
often used effectively at the unit level

 Main goal of inspection process is to detect
defects in work products

 First proposed by Fagan in 70s

 Earlier used for code, now used for all types
of work products

 Is recognized as an industry best practice

Coding 50

Code review…

 Conducted by group of programmers for
programmers (i.e. review done by peers)

 Is a structured process with defined roles
for the participants

 The focus is on identifying problems, not
resolving them

 Review data is recorded and used for
monitoring the effectiveness

Coding 51

A Review Process

Work Product for

review

Planning Preparation & Overview

Schedule,

Review Team,

Invitation

Group Review Meeting
Defects Log,

Recommendation

Rework & Follow Up
Reviewed Work

Product, Summary

Report

Coding 52

Planning

 Select the group review team – three to
five people group is best

 Identify the moderator – has the main
responsibility for the inspection

 Prepare package for distribution – work
product for review plus supporting docs

 Package should be complete for review

Coding 53

Overview and Self-Review

 A brief meeting – deliver package, explain
purpose of the review, intro,…

 All team members then individually review
the work product

 Lists the issues/problems they find in the self-
preparation log

 Checklists, guidelines are used

 Ideally, should be done in one sitting and
issues recorded in a log

Coding 54

Self-Review Log

Project name:

Work product name and ID:

Reviewer Name

Effort spent (hours)

Defect list

No Location Description Criticality

Coding 55

Group Review Meeting

 Purpose – define the final defect list

 Entry criteria – each member has done
a proper self-review (logs are reviewed)

 Group review meeting
 A reviewer goes over the product line by

line

 At any line, all issues are raised

 Discussion follows to identify if a defect

 Decision recorded (by the scribe)

Coding 56

Group Review Meeting…

 At the end of the meeting

 Scribe presents the list of defects/issues

 If few defects, the work product is
accepted; else it might be asked for
another review

 Group does not propose solutions – though
some suggestions may be recorded

 A summary of the inspections is prepared –
useful for evaluating effectiveness

Coding 57

Group Review Meeting…

 Moderator is in-charge of the meeting
and plays a central role
 Ensures that focus is on defect detection

and solutions are not discussed/proposed

 Work product is reviewed, not the author
of the work product

 Amicable/orderly execution of the meeting

 Uses summary report to analyze the overall
effectiveness of the review

Coding 58

Summary Report Example

Project

Work Product Type

Size of work product

Review team

Effort (person hours)

 Preparation

 Group meeting

Total

XXXX

Class AuctionItem

250 LOC of Java

P1, P2, P3

3 person-hrs (total)

4.5 person-hrs

7.5

Coding 59

Summary Report…

Defects

 No of major defects

 No of minor defects

Total

Review status

Reco for next phase

Comments

3

8

11

Accepted

Nil

Code can be improved

Coding 60

Summary Report…

 Defect density found – 3/0.25 = 12
major defects/KLOC
 Seems OK from experience

 Similarly for total and minor density

 Preparation rate – about 250/1 = 250
LOC / hr : Seems OK

 Group review rate: 250/1.5 = 180
LOC/hr; seems OK

Coding 61

Rework and Follow Up

 Defects in the defects list are fixed later
by the author

 Once fixed, author gets it OKed by the
moderator, or goes for another review

 Once all defects/issues are satisfactorily
addressed, review is completed and
collected data is submitted

Coding 62

Metrics

Coding 63

Metrics for Size

 LOC or KLOC

 non-commented, non blank lines is a
standard definition

 Generally only new or modified lines are
counted

 Used heavily, though has shortcomings

Coding 64

Metrics for Size…

 Halstead’s Volume
 n1: no of distinct operators

 n2: no of distinct operands

 N1: total occurrences of operators

 N2: Total occurrences of operands

 Vocabulary, n = n1 + n2

 Length, N = N1 + N2

 Volume, V = N log2(n)

Coding 65

Metrics for Complexity

 Cyclomatic Complexity is perhaps the most
widely used measure

 Represents the program by its control flow
graph with e edges, n nodes, and p parts

 Cyclomatic complexity is defined as V(G) = e-
n+p

 This is same as the number of linearly
independent cycles in the graph

 And is same as the number of decisions
(conditionals) in the program plus one

Coding 66

Cyclomatic complexity example…

1. {

2. i=1;

3. while (i<=n) {

4. J=1;

5. while(j <= i) {

6. If (A[i]<A[j])

7. Swap(A[i], A[j]);

8. J=j+1;}

9. i = i+1;}

10. }

Coding 67

Example…

Coding 68

Example…

 V(G) = 10-7+1 = 4

 Independent circuits
1. b c e b

2. b c d e b

3. a b f a

4. a g a

 No of decisions is 3 (while, while, if);
complexity is 3+1 = 4

Coding 69

Complexity metrics…

 Halsteads

 N2/n2 is avg times an operand is used

 If vars are changed frequently, this is
larger

 Ease of reading or writing is defined as
 D = (n1*N2)/(2*n2)

 There are others, e.g. live variables,
knot count..

Coding 70

Complexity metrics…

 The basic use of these is to reduce the
complexity of modules

 One suggestion is that cyclomatic
complexity should be less than 10

 Another use is to identify high
complexity modules and then see if
their logic can be simplified

Coding 71

Summary

 Goal of coding is to convert a design into
easy to read code with few bugs

 Good programming practices like structured
programming, information hiding, etc can
help

 There are many methods to verify the code
of a module – unit testing and inspections are
most commonly used

 Size and complexity measures are defined
and often used; common ones are LOC and
cyclomatic complexity

Testing 72

Software Testing

Testing 73

Testing Concepts

Testing 74

Background

 Main objectives of a project: High Quality &
High Productivity (Q&P)

 Quality has many dimensions
 reliability, maintainability, interoperability etc.

 Reliability is perhaps the most important
 Reliability: The chances of software failing
 More defects => more chances of failure =>

lesser reliability
 Hence Q goal: Have as few defects as

possible in the delivered software

Testing 75

Faults & Failure

 Failure: A software failure occurs if the
behavior of the s/w is different from
expected/specified.

 Fault: cause of software failure

 Fault = bug = defect

 Failure implies presence of defects

 A defect has the potential to cause failure.

 Definition of a defect is environment,
project specific

Testing 76

Role of Testing

 Reviews are human processes - can not catch all
defects

 Hence there will be requirement defects, design
defects and coding defects in code

 These defects have to be identified by testing

 Therefore testing plays a critical role in ensuring
quality.

 All defects remaining from before as well as new
ones introduced have to be identified by testing.

Testing 77

Detecting defects in Testing

 During testing, software under test
(SUT) executed with set of test cases

 Failure during testing => defects are
present

 No failure => confidence grows, but can
not say “defects are absent”

 To detect defects, must cause failures
during testing

Testing 78

Test Oracle

 To check if a failure has occurred when
executed with a test case, we need to
know the correct behavior

 I.e. need a test oracle, which is often a
human

 Human oracle makes each test case
expensive as someone has to check the
correctness of its output

Testing 79

Test case and test suite

 Test case – a set of test inputs and
execution conditions designed to
exercise SUT in a particular manner

 Test case should also specify the expected
output – oracle uses this to detect failure

 Test suite - group of related test cases
generally executed together

Testing 80

Test harness

 During testing, for each test case in a test
suite, conditions have to be set, SUT called
with inputs, output checked against expected
to declare fail/pass

 Many test frameworks (or test harness) exist
that automate the testing process
 Each test case is often a function/method
 A test case sets up the conditions, calls the SUT

with the required inputs
 Tests the results through assert statements
 If any assert fails – declares failure

Testing 81

Levels of Testing

 The code contains requirement defects,
design defects, and coding defects

 Nature of defects is different for
different injection stages

 One type of testing will be unable to
detect the different types of defects

 Different levels of testing are used to
uncover these defects

Testing 82

User needs Acceptance testing

Requirement

specification
System testing

Design

code

Integration testing

Unit testing

Testing 83

Unit Testing

 Different modules tested separately

 Focus: defects injected during coding

 Essentially a code verification technique,
covered in previous chapter

 UT is closely associated with coding

 Frequently the programmer does UT; coding
phase sometimes called “coding and unit
testing”

Testing 84

Integration Testing

 Focuses on interaction of modules in a
subsystem

 Unit tested modules combined to form
subsystems

 Test cases to “exercise” the interaction
of modules in different ways

 May be skipped if the system is not too
large

Testing 85

System Testing

 Entire software system is tested

 Focus: does the software implement the
requirements?

 Validation exercise for the system with
respect to the requirements

 Generally the final testing stage before the
software is delivered

 May be done by independent people

 Defects removed by developers

 Most time consuming test phase

Testing 86

Acceptance Testing

 Focus: Does the software satisfy user needs?

 Generally done by end users/customer in
customer environment, with real data

 Only after successful AT software is deployed

 Any defects found,are removed by developers

 Acceptance test plan is based on the
acceptance test criteria in the SRS

Testing 87

Other forms of testing

 Performance testing
 tools needed to “measure” performance

 Stress testing
 load the system to peak, load generation tools

needed

 Regression testing
 test that previous functionality works alright
 important when changes are made
 Previous test records are needed for comparisons
 Prioritization of testcases needed when complete

test suite cannot be executed for a change

Testing 88

Testing Process

Testing 89

Testing

 Testing only reveals the presence of defects

 Does not identify nature and location of defects

 Identifying & removing the defect => role of
debugging and rework

 Preparing test cases, performing testing,
defects identification & removal all consume
effort

 Overall testing becomes very expensive : 30-
50% development cost

Testing 90

Testing…

 Multiple levels of testing are done in a project

 At each level, for each SUT, test cases have
to be designed and then executed

 Overall, testing is very complex in a project
and has to be done well

 Testing process at a high level has: test
planning, test case design, and test execution

Testing 91

Test Plan

 Testing usually starts with test plan and ends
with acceptance testing

 Test plan is a general document that defines
the scope and approach for testing for the
whole project

 Inputs are SRS, project plan, design

 Test plan identifies what levels of testing will
be done, what units will be tested, etc in the
project

Testing 92

Test Plan…

 Test plan usually contains
 Test unit specs: what units need to be

tested separately

 Features to be tested: these may include
functionality, performance, usability,…

 Approach: criteria to be used, when to
stop, how to evaluate, etc

 Test deliverables

 Schedule and task allocation

Testing 93

Test case Design

 Test plan focuses on testing a project; does
not focus on details of testing a SUT

 Test case design has to be done separately
for each SUT

 Based on the plan (approach, features,..) test
cases are determined for a unit

 Expected outcome also needs to be specified
for each test case

Testing 94

Test case design…

 Together the set of test cases should detect
most of the defects

 Would like the set of test cases to detect any
defects, if it exists

 Would also like set of test cases to be small -
each test case consumes effort

 Determining a reasonable set of test case is
the most challenging task of testing

Testing 95

Test case design

 The effectiveness and cost of testing depends on the
set of test cases

 Q: How to determine if a set of test cases is good?
I.e. the set will detect most of the defects, and a
smaller set cannot catch these defects

 No easy way to determine goodness; usually the set
of test cases is reviewed by experts

 This requires test cases be specified before testing –
a key reason for having test case specs

 Test case specs are essentially a table

Testing 96

Test case specifications

 Seq.No Condition

to be tested
Test Data

Expected

 result
successful

Testing 97

Test case specifications…

 So for each testing, test case specs are
developed, reviewed, and executed

 Preparing test case specifications is
challenging and time consuming

 Test case criteria can be used

 Special cases and scenarios may be used

 Once specified, the execution and checking of
outputs may be automated through scripts

 Desired if repeated testing is needed

 Regularly done in large projects

Testing 98

Test case execution

 Executing test cases may require drivers or stubs to
be written; some tests can be auto, others manual
 A separate test procedure document may be prepared

 Test summary report is often an output – gives a
summary of test cases executed, effort, defects
found, etc

 Monitoring of testing effort is important to ensure
that sufficient time is spent

 Computer time also is an indicator of how testing is
proceeding

Testing 99

Defect logging and tracking

 A large software may have thousands of
defects, found by many different people

 Often person who fixes (usually the coder) is
different from who finds

 Due to large scope, reporting and fixing of
defects cannot be done informally

 Defects found are usually logged in a defect
tracking system and then tracked to closure

 Defect logging and tracking is one of the best
practices in industry

Testing 100

Defect logging…

 A defect in a software project has a life
cycle of its own, like
 Found by someone, sometime and logged

along with info about it (submitted)

 Job of fixing is assigned; person debugs
and then fixes (fixed)

 The manager or the submitter verifies that
the defect is indeed fixed (closed)

 More elaborate life cycles possible

Testing 101

Defect logging…

Testing 102

Defect logging…

 During the life cycle, info about defect
is logged at diff stages to help debug as
well as analysis

 Defects generally categorized into a few
types, and type of defects is recorded

 ODC is one classification

 Some std categories: Logic, standards, UI,
interface, performance, documentation,..

Testing 103

Defect logging…

 Severity of defects in terms of its
impact on sw is also recorded

 Severity useful for prioritization of fixing

 One categorization
 Critical: Show stopper

 Major: Has a large impact

 Minor: An isolated defect

 Cosmetic: No impact on functionality

Testing 104

Defect logging…

 Ideally, all defects should be closed

 Sometimes, organizations release software
with known defects (hopefully of lower
severity only)

 Organizations have standards for when a
product may be released

 Defect log may be used to track the trend of
how defect arrival and fixing is happening

Testing 105

Black Box Testing

Testing 106

Role of Test cases

 Ideally would like the following for test
cases

 No failure implies “no defects” or “high quality”
 If defects present, then some test case causes

a failure

 Role of test cases is clearly very critical

 Only if test cases are “good”, the
confidence increases after testing

Testing 107

Test case design

 During test planning, have to design a set of
test cases that will detect defects present

 Some criteria needed to guide test case
selection

 Two approaches to design test cases
 functional or black box

 structural or white box

 Both are complimentary; we discuss a few
approaches/criteria for both

Testing 108

Black Box testing

 Software tested to be treated as a block
box

 Specification for the black box is given

 The expected behavior of the system is
used to design test cases

 i.e test cases are determined solely from
specification.

 Internal structure of code not used for test
case design

Testing 109

Black box Testing…

 Premise: Expected behavior is specified.

 Hence just test for specified expected
behavior

 How it is implemented is not an issue.

 For modules,specification produced in
design specify expected behavior

 For system testing, SRS specifies
expected behavior

Testing 110

Black Box Testing…

 Most thorough functional testing - exhaustive
testing

 Software is designed to work for an input space

 Test the software with all elements in the input
space

 Infeasible - too high a cost

 Need better method for selecting test cases

 Different approaches have been proposed

Testing 111

Equivalence Class partitioning

 Divide the input space into equivalent classes

 If the software works for a test case from a
class the it is likely to work for all

 Can reduce the set of test cases if such
equivalent classes can be identified

 Getting ideal equivalent classes is impossible

 Approximate it by identifying classes for
which different behavior is specified

Testing 112

Equivalence class partitioning…

 Rationale: specification requires same
behavior for elements in a class

 Software likely to be constructed such
that it either fails for all or for none.

 E.g. if a function was not designed for
negative numbers then it will fail for all
the negative numbers

 For robustness, should form equivalent
classes for invalid inputs also

Testing 113

Equivalent class partitioning..

 Every condition specified as input is an
equivalent class

 Define invalid equivalent classes also

 E.g. range 0< value<Max specified

 one range is the valid class

 input < 0 is an invalid class

 input > max is an invalid class

 Whenever that entire range may not be
treated uniformly - split into classes

Testing 114

Equivalent class partitioning..

 Should consider eq. classes in outputs also
and then give test cases for different classes

 E.g.: Compute rate of interest given loan
amount, monthly installment, and number of
months

 Equivalent classes in output: + rate, rate = 0 ,-ve
rate

 Have test cases to get these outputs

Testing 115

Equivalence class…

 Once eq classes selected for each of the
inputs, test cases have to be selected

 Select each test case covering as many
valid eq classes as possible

 Or, have a test case that covers at most
one valid class for each input

 Plus a separate test case for each invalid
class

Testing 116

Example

 Consider a program that takes 2 inputs
– a string s and an integer n

 Program determines n most frequent
characters

 Tester believes that programmer may
deal with diff types of chars separately

 A set of valid and invalid equivalence
classes is given

Testing 117

Example..

Input Valid Eq Class Invalid Eq class

S 1: Contains numbers

2: Lower case letters

3: upper case letters

4: special chars

5: str len between 0-N(max)

1: non-ascii char

2: str len > N

N 6: Int in valid range 3: Int out of range

Testing 118

Example…

 Test cases (i.e. s , n) with first method

 s : str of len < N with lower case, upper case,
numbers, and special chars, and n=5

 Plus test cases for each of the invalid eq classes

 Total test cases: 1+3= 4

 With the second approach

 A separate str for each type of char (i.e. a str of
numbers, one of lower case, …) + invalid cases

 Total test cases will be 5 + 2 = 7

Testing 119

Boundary value analysis

 Programs often fail on special values

 These values often lie on boundary of
equivalence classes

 Test cases that have boundary values have
high yield

 These are also called extreme cases

 A BV test case is a set of input data that lies
on the edge of a eq class of input/output

Testing 120

BVA...

 For each equivalence class

 choose values on the edges of the class
 choose values just outside the edges

 E.g. if 0 <= x <= 1.0
 0.0 , 1.0 are edges inside
 -0.1,1.1 are just outside

 E.g. a bounded list - have a null list , a
maximum value list

 Consider outputs also and have test cases
generate outputs on the boundary

Testing 121

BVA…

 In BVA we determine the value of vars that
should be used

 If input is a defined range, then there are 6
boundary values plus 1 normal value (tot: 7)

 If multiple inputs, how to combine them into
test cases; two strategies possible
 Try all possible combination of BV of diff variables,

with n vars this will have 7n test cases!

 Select BV for one var; have other vars at normal
values + 1 of all normal values

Testing 122

BVA.. (test cases for two vars – x and y)

Testing 123

Pair-wise testing

 Often many parmeters determine the behavior of a
software system

 The parameters may be inputs or settings, and take
diff values (or diff value ranges)

 Many defects involve one condition (single-mode
fault), eg. sw not being able to print on some type of
printer
 Single mode faults can be detected by testing for different

values of diff parms

 If n parms and each can take m values, we can test for one
diff value for each parm in each test case

 Total test cases: m

Testing 124

Pair-wise testing…

 All faults are not single-mode and sw may fail
at some combinations
 Eg tel billing sw does not compute correct bill for

night time calling (one parm) to a particular
country (another parm)

 Eg ticketing system fails to book a biz class ticket
(a parm) for a child (a parm)

 Multi-modal faults can be revealed by testing
diff combination of parm values

 This is called combinatorial testing

Testing 125

Pair-wise testing…

 Full combinatorial testing not feasible
 For n parms each with m values, total

combinations are nm

 For 5 parms, 5 values each (tot: 3125), if one test
is 5 mts, tot time > 1 month!

 Research suggests that most such faults are
revealed by interaction of a pair of values

 I.e. most faults tend to be double-mode

 For double mode, we need to exercise each
pair – called pair-wise testing

Testing 126

Pair-wise testing…

 In pair-wise, all pairs of values have to
be exercised in testing

 If n parms with m values each, between
any 2 parms we have m*m pairs
 1st parm will have m*m with n-1 others

 2nd parm will have m*m pairs with n-2

 3rd parm will have m*m pairs with n-3, etc.

 Total no of pairs are m*m*n*(n-1)/2

Testing 127

Pair-wise testing…

 A test case consists of some setting of the n
parameters

 Smallest set of test cases when each pair is
covered once only

 A test case can cover a maximum of (n-
1)+(n-2)+…=n(n-1)/2 pairs

 In the best case when each pair is covered
exactly once, we will have m2 different test
cases providing the full pair-wise coverage

Testing 128

Pair-wise testing…

 Generating the smallest set of test cases that
will provide pair-wise coverage is non-trivial

 Efficient algos exist; efficiently generating
these test cases can reduce testing effort
considerably

 In an example with 13 parms each with 3 values
pair-wise coverage can be done with 15 testcases

 Pair-wise testing is a practical approach that
is widely used in industry

Testing 129

Pair-wise testing, Example

 A sw product for multiple platforms and uses
browser as the interface, and is to work with
diff OSs

 We have these parms and values
 OS (parm A): Windows, Solaris, Linux

 Mem size (B): 128M, 256M, 512M

 Browser (C): IE, Netscape, Mozilla

 Total no of pair wise combinations: 27

 No of cases can be less

Testing 130

Pair-wise testing…

Test case Pairs covered

a1, b1, c1

a1, b2, c2

a1, b3, c3

a2, b1, c2

a2, b2, c3

a2, b3, c1

a3, b1, c3

a3, b2, c1

a3, b3, c2

(a1,b1) (a1, c1) (b1,c1)

(a1,b2) (a1,c2) (b2,c2)

(a1,b3) (a1,c3) (b3,c3)

(a2,b1) (a2,c2) (b1,c2)

(a2,b2) (a2,c3) (b2,c3)

(a2,b3) (a2,c1) (b3,c1)

(a3,b1) (a3,c3) (b1,c3)

(a3,b2) (a3,c1) (b2,c1)

(a3,b3) (a3,c2) (b3,c2)

Testing 131

Special cases

 Programs often fail on special cases

 These depend on nature of inputs, types of
data structures,etc.

 No good rules to identify them

 One way is to guess when the software
might fail and create those test cases

 Also called error guessing

 Play the sadist & hit where it might hurt

Testing 132

Error Guessing

 Use experience and judgement to guess situations
where a programmer might make mistakes

 Special cases can arise due to assumptions about
inputs, user, operating environment, business, etc.

 E.g. A program to count frequency of words

 file empty, file non existent, file only has blanks, contains
only one word, all words are same, multiple consecutive
blank lines, multiple blanks between words, blanks at the
start, words in sorted order, blanks at end of file, etc.

 Perhaps the most widely used in practice

Testing 133

State-based Testing

 Some systems are state-less: for same inputs,
same behavior is exhibited

 Many systems’ behavior depends on the state
of the system i.e. for the same input the
behavior could be different

 I.e. behavior and output depend on the input
as well as the system state

 System state – represents the cumulative
impact of all past inputs

 State-based testing is for such systems

Testing 134

State-based Testing…

 A system can be modeled as a state machine

 The state space may be too large (is a cross
product of all domains of vars)

 The state space can be partitioned in a few
states, each representing a logical state of
interest of the system

 State model is generally built from such
states

Testing 135

State-based Testing…

 A state model has four components

 States: Logical states representing
cumulative impact of past inputs to system

 Transitions: How state changes in response
to some events

 Events: Inputs to the system

 Actions: The outputs for the events

Testing 136

State-based Testing…

 State model shows what transitions
occur and what actions are performed

 Often state model is built from the
specifications or requirements

 The key challenge is to identify states
from the specs/requirements which
capture the key properties but is small
enough for modeling

Testing 137

State-based Testing, example…

 Consider the student survey example
(discussed in Chap 4)

 A system to take survey of students

 Student submits survey and is returned
results of the survey so far

 The result may be from the cache (if the
database is down) and can be up to 5
surveys old

Testing 138

State-based Testing, example…

 In a series of requests, first 5 may be treated
differently

 Hence, we have two states: one for req no 1-
4 (state 1), and other for 5 (2)

 The db can be up or down, and it can go
down in any of the two states (3-4)

 Once db is down, the system may get into
failed state (5), from where it may recover

Testing 139

State-based Testing, example…

Testing 140

State-based Testing…

 State model can be created from the
specs or the design

 For objects, state models are often built
during the design process

 Test cases can be selected from the
state model and later used to test an
implementation

 Many criteria possible for test cases

Testing 141

State-based Testing criteria

 All transaction coverage (AT): test case set T
must ensure that every transition is exercised

 All transitions pair coverage (ATP). T must
execute all pairs of adjacent transitions
(incoming and outgoing transition in a state)

 Transition tree coverage (TT). T must
execute all simple paths (i.e. a path from
start to end or a state it has visited)

Testing 142

Example, test cases for AT criteria

SNo Transition Test case

1

2

3

4

5

6

7

8

1 -> 2

1 -> 2

2 -> 1

1 -> 3

3 -> 3

3 -> 4

4 -> 5

5 -> 2

Req()

Req(); req(); req(); req();req(); req()

Seq for 2; req()

Req(); fail()

Req(); fail(); req()

Req(); fail(); req(); req(); req();req(); req()

Seq for 6; req()

Seq for 6; req(); recover()

Testing 143

State-based testing…

 SB testing focuses on testing the states
and transitions to/from them

 Different system scenarios get tested;
some easy to overlook otherwise

 State model is often done after design
information is available

 Hence it is sometimes called grey box
testing (as it not pure black box)

Testing 144

White Box Testing

Testing 145

White box testing

 Black box testing focuses only on functionality

 What the program does; not how it is implemented

 White box testing focuses on implementation

 Aim is to exercise different program structures with
the intent of uncovering errors

 Is also called structural testing

 Various criteria exist for test case design

 Test cases have to be selected to satisfy
coverage criteria

Testing 146

Types of structural testing

 Control flow based criteria

 looks at the coverage of the control flow graph

 Data flow based testing

 looks at the coverage in the definition-use graph

 Mutation testing

 looks at various mutants of the program

 We will discuss only control flow based
criteria – these are most commonly used

Testing 147

Control flow based criteria

 Considers the program as control flow graph

 Nodes represent code blocks – i.e. set of
statements always executed together

 An edge (i,j) represents a possible transfer of
control from i to j

 Assume a start node and an end node

 A path is a sequence of nodes from start to
end

Testing 148

Statement Coverage Criterion

 Criterion: Each statement is executed at least once
during testing

 I.e. set of paths executed during testing should
include all nodes

 Limitation: does not require a decision to evaluate to
false if no else clause

 E.g. : abs (x) : if (x>=0) x = -x; return(x)

 The set of test cases {x = 0} achieves 100% statement
coverage, but error not detected

 Guaranteeing 100% coverage not always possible
due to possibility of unreachable nodes

Testing 149

Branch coverage

 Criterion: Each edge should be traversed at
least once during testing

 i.e. each decision must evaluate to both true
and false during testing

 Branch coverage implies stmt coverage

 If multiple conditions in a decision, then all
conditions need not be evaluated to T and F

Testing 150

Control flow based…

 There are other criteria too - path coverage,
predicate coverage, cyclomatic complexity
based, ...

 None is sufficient to detect all types of
defects (e.g. a program missing some paths
cannot be detected)

 They provide some quantitative handle on the
breadth of testing

 More used to evaluate the level of testing
rather than selecting test cases

Testing 151

Tool support and test case selection

 Two major issues for using these criteria

 How to determine the coverage

 How to select test cases to ensure coverage

 For determining coverage - tools are essential

 Tools also tell which branches and statements
are not executed

 Test case selection is mostly manual - test plan
is to be augmented based on coverage data

Testing 152

In a Project

 Both functional and structural should be used

 Test plans are usually determined using functional
methods; during testing, for further rounds, based on
the coverage, more test cases can be added

 Structural testing is useful at lower levels only; at
higher levels ensuring coverage is difficult

 Hence, a combination of functional and structural at
unit testing

 Functional testing (but monitoring of coverage) at
higher levels

Testing 153

Comparison

Code Review Structural

Testing

Functional

Testing
Computational M H M

Logic M H M

I/O H M H

Data handling H L H

Interface H H M

Data defn. M L M

Database H M M

Testing 154

Metrics

Testing 155

Data

 Defects found are generally logged

 The log forms the basic data source for
metrics and analysis during testing

 Main questions of interest for which metrics
can be used

 How good is the testing that has been done so
far?

 What is the quality or reliability of software after
testing is completed?

Testing 156

Coverage Analysis

 Coverage is very commonly used to evaluate
the thoroughness of testing

 This is not white box testing, but evaluating
the overall testing through coverage

 Organization sometimes have guidelines for
coverage, particularly at unit level (say 90%
before checking code in)

 Coverage of requirements also checked –
often by evaluating the test suites against
requirements

Testing 157

Reliability Estimation

 High reliability is an important goal to be achieved by
testing

 Reliability is usually quantified as a probability or a
failure rate or mean time to failure
 R(t) = P(X > t)
 MTTF = mean time to failure
 Failure rate

 For a system reliability can be measured by counting
failures over a period of time

 Measurement often not possible for software as due
to fixes reliability changes, and with one-off, not
possible to measure

Testing 158

Reliability Estimation…

 Sw reliability estimation models are used to
model the failure followed by fix model of
software

 Data about failures and their times during the
last stages of testing is used by these model

 These models then use this data and some
statistical techniques to predict the reliability
of the software

 Software reliability growth models are quite
complex and sophisticated

Testing 159

Reliability Estimation

 Simple method of measuring reliability
achieved during testing

 Failure rate, measured by no of failures in some
duration

 For using this for prediction, assumed that
during this testing software is used as it will
be by users

 Execution time is often used for failure rate, it
can be converted to calendar time

Testing 160

Defect removal efficiency

 Basic objective of testing is to identify
defects present in the programs

 Testing is good only if it succeeds in this goal

 Defect removal efficiency of a QC activity =
% of present defects detected by that QC
activity

 High DRE of a quality control activity means
most defects present at the time will be
removed

Testing 161

Defect removal efficiency …

 DRE for a project can be evaluated only when all
defects are know, including delivered defects

 Delivered defects are approximated as the number of
defects found in some duration after delivery

 The injection stage of a defect is the stage in which it
was introduced in the software, and detection stage
is when it was detected

 These stages are typically logged for defects

 With injection and detection stages of all defects,
DRE for a QC activity can be computed

Testing 162

Defect Removal Efficiency …

 DREs of different QC activities are a
process property - determined from
past data

 Past DRE can be used as expected
value for this project

 Process followed by the project must be
improved for better DRE

Testing 163

Summary

 Testing plays a critical role in removing
defects, and in generating confidence

 Testing should be such that it catches
most defects present, i.e. a high DRE

 Multiple levels of testing needed for this

 Incremental testing also helps

 At each testing, test cases should be
specified, reviewed, and then executed

Testing 164

Summary …

 Deciding test cases during planning is the
most important aspect of testing

 Two approaches – black box and white box

 Black box testing - test cases derived from
specifications.

 Equivalence class partitioning, boundary value,
cause effect graphing, error guessing

 White box - aim is to cover code structures

 statement coverage, branch coverage

Testing 165

Summary…

 In a project both used at lower levels
 Test cases initially driven by functional
 Coverage measured, test cases enhanced using

coverage data

 At higher levels, mostly functional testing
done; coverage monitored to evaluate the
quality of testing

 Defect data is logged, and defects are
tracked to closure

 The defect data can be used to estimate
reliability, DRE

