
Requirements 1

Software Requirements
Analysis and Specification

 UNIT-3

Requirements 2

Background

 Problem of scale is a key issue for SE

 For small scale, understand and specifying
requirements is easy

 For large problem - very hard; probably the
hardest, most problematic and error prone

 Input : user needs in minds of people

 Output : precise statement of what the future
system will do

Requirements 3

Background..

 Identifying and specifying req necessarily
involves people interaction

 Cannot be automated

 Requirement (IEEE)= A condition or capability
that must be possessed by a system

 Req. phase ends with a software requirements
specification (SRS) document

 SRS specifies what the proposed system
should do

Requirements 4

Background..

 Requirements understanding is hard

 Visualizing a future system is difficult

 Capability of the future system not clear, hence
needs not clear

 Requirements change with time

 …

 Essential to do a proper analysis and
specification of requirements

Requirements 5

Need for SRS

 SRS establishes basis of agreement
between the user and the supplier.

 Users needs have to be satisfied, but user
may not understand software

 Developers will develop the system, but
may not know about problem domain

 SRS is the medium to bridge the commn.
gap and specify user needs in a manner
both can understand

Requirements 6

Need for SRS…

 Helps user understand his needs.

 users do not always know their needs

 must analyze and understand the potential

 the goal is not just to automate a manual system,
but also to add value through IT

 The req process helps clarify needs

 SRS provides a reference for validation of the
final product

 Clear understanding about what is expected.

 Validation - “ SW satisfies the SRS “

Requirements 7

Need for SRS…

 High quality SRS essential for high Quality SW

 Requirement errors get manifested in final sw

 to satisfy the quality objective, must begin with
high quality SRS

 Requirements defects are not few

 25% of all defects in one case; 54% of all defects found
after UT

 80 defects in A7 that resulted in change requests

 500 / 250 defects in previously approved SRS.

Requirements 8

Need for SRS…

 Good SRS reduces the development cost
 SRS errors are expensive to fix later

 Req. changes can cost a lot (up to 40%)

 Good SRS can minimize changes and errors

 Substantial savings; extra effort spent
during req. saves multiple times that effort

 An Example
 Cost of fixing errors in req. , design ,

coding , acceptance testing and operation
are 2 , 5 , 15 , 50 , 150 person-months

Requirements 9

Need for SRS…

 Example …

 After req. phase 65% req errs detected in design ,
2% in coding, 30% in Acceptance testing, 3%
during operation

 If 50 requirement errors are not removed in the
req. phase, the total cost
32.5 *5 + 1*15 + 15*50 + 1.5*150 = 1152 hrs

 If 100 person-hours invested additionally in req to
catch these 50 defects , then development cost
could be reduced by 1152 person-hours.

 Net reduction in cost is 1052 person-hours

Requirements 10

Requirements Process

 Sequence of steps that need to be performed
to convert user needs into SRS

 Process has to elicit needs and requirements
and clearly specifies it

 Basic activities

 problem or requirement analysis

 requirement specification

 validation

 Analysis involves elicitation and is the hardest

Requirements 11

Requirements Process..

needs

Analysis

Specification

Validation

Requirements 12

Requirement process..

 Process is not linear, it is iterative and
parallel

 Overlap between phases - some parts
may be analyzed and specified

 Specification itself may help analysis

 Validation can show gaps that can lead
to further analysis and spec

Requirements 13

Requirements Process…

 Focus of analysis is on understanding the
desired systems and it’s requirements

 Divide and conquer is the basic strategy

 decompose into small parts, understand each part
and relation between parts

 Large volumes of information is generated

 organizing them is a key

 Techniques like data flow diagrams, object
diagrams etc. used in the analysis

Requirements 14

Requirements Process..

 Transition from analysis to specs is hard
 in specs, external behavior specified

 during analysis, structure and domain are
understood

 analysis structures helps in specification,
but the transition is not final

 methods of analysis are similar to that of
design, but objective and scope different

 analysis deals with the problem domain,
whereas design deals with solution domain

Requirements 15

Problem Analysis

 Aim: to gain an understanding of the needs,
requirements, and constraints on the software

 Analysis involves

 interviewing client and users

 reading manuals

 studying current systems

 helping client/users understand new possibilities

 Like becoming a consultant

 Must understand the working of the
organization , client and users

Requirements 16

Problem Analysis…

 Some issues

 Obtaining the necessary information

 Brainstorming: interacting with clients to
establish desired properties

 Information organization, as large amount
of info. gets collected

 Ensuring completeness

 Ensuring consistency

 Avoiding internal design

Requirements 17

Problem Analysis…

 Interpersonal issues are important

 Communication skills are very important

 Basic principle: problem partition

 Partition w.r.t what?

 Object - OO analysis

 Function - structural analysis

 Events in the system – event partitioning

 Projection - get different views

 Will discuss few different analysis techniques

Requirements 18

Characteristics of an SRS

 What should be the characteristics of a good
SRS? Some key ones are

 Complete

 Unambiguous

 Consistent

 Verifiable

 Ranked for importance and/or stability

Requirements 19

Characteristics…

 Correctness
 Each requirement accurately represents some

desired feature in the final system

 Completeness
 All desired features/characteristics specified

 Hardest to satisfy

 Completeness and correctness strongly related

 Unambiguous
 Each req has exactly one meaning

 Without this errors will creep in

 Important as natural languages often used

Requirements 20

Characteristics…

 Verifiability

 There must exist a cost effective way of checking
if sw satisfies requirements

 Consistent

 two requirements don’t contradict each other

 Ranked for importance/stability

 Needed for prioritizing in construction

 To reduce risks due to changing requirements

Requirements 21

Components of an SRS

 What should an SRS contain ?

 Clarifying this will help ensure
completeness

 An SRS must specify requirements on

 Functionality

 Performance

 Design constraints

 External interfaces

Requirements 22

Functional Requirements

 Heart of the SRS document; this forms the
bulk of the specs

 Specifies all the functionality that the system
should support

 Outputs for the given inputs and the
relationship between them

 All operations the system is to do

 Must specify behavior for invalid inputs too

Requirements 23

Performance Requirements

 All the performance constraints on the
software system

 Generally on response time ,
throughput etc => dynamic

 Capacity requirements => static

 Must be in measurable terms
(verifiability)
 Eg resp time should be xx 90% of the time

Requirements 24

Design Constraints

 Factors in the client environment that
restrict the choices

 Some such restrictions
 Standard compliance and compatibility with

other systems

 Hardware Limitations

 Reliability, fault tolerance, backup req.

 Security

Requirements 25

External Interface

 All interactions of the software with
people, hardware, and sw

 User interface most important

 General requirements of “friendliness”
should be avoided

 These should also be verifiable

Requirements 26

Specification Language

 Language should support desired char
of the SRS

 Formal languages are precise and
unambiguous but hard

 Natural languages mostly used, with
some structure for the document

 Formal languages used for special
features or in highly critical systems

Requirements 27

Structure of an SRS

 Introduction

 Purpose , the basic objective of the system

 Scope of what the system is to do , not to do

 Overview

 Overall description

 Product perspective

 Product functions

 User characteristics

 Assumptions

 Constraints

Requirements 28

Structure of an SRS…

 Specific requirements

 External interfaces

 Functional requirements

 Performance requirements

 Design constraints

 Acceptable criteria

 desirable to specify this up front.

 This standardization of the SRS was done by
IEEE.

Requirements 29

Use Cases Approach for
Functional Requirements

 Traditional approach for fn specs – specify
each function

 Use cases is a newer technique for specifying
behavior (functionality)

 I.e. focuses on functional specs only

 Though primarily for specification, can be
used in analysis and elicitation

 Can be used to specify business or org
behavior also, though we will focus on sw

 Well suited for interactive systems

Requirements 30

Use Cases Basics

 A use case captures a contract between
a user and system about behavior

 Basically a textual form; diagrams are
mostly to support

 Also useful in requirements elicitation as
users like and understand the story
telling form and react to it easily

Requirements 31

Basics..

 Actor: a person or a system that interacts with the
proposed system to achieve a goal
 Eg. User of an ATM (goal: get money); data entry operator;

(goal: Perform transaction)

 Actor is a logical entity, so receiver and sender actors
are different (even if the same person)

 Actors can be people or systems

 Primary actor: The main actor who initiates a UC
 UC is to satisfy his goals

 The actual execution may be done by a system or another
person on behalf of the Primary actor

Requirements 32

Basics..

 Scenario: a set of actions performed to
achieve a goal under some conditions

 Actions specified as a sequence of steps

 A step is a logically complete action performed
either by the actor or the system

 Main success scenario – when things go
normally and the goal is achieved

 Alternate scenarios: When things go wrong
and goals cannot be achieved

Requirements 33

Basics..

 A UC is a collection of many such
scenarios

 A scenario may employ other use cases
in a step

 I.e. a sub-goal of a UC goal may be
performed by another UC

 I.e. UCs can be organized hierarchically

Requirements 34

Basics…

 UCs specify functionality by describing
interactions between actors and system

 Focuses on external behavior
 UCs are primarily textual

 UC diagrams show UCs, actors, and dependencies
 They provide an overview

 Story like description easy to understand by
both users and analysts

 They do not form the complete SRS, only the
functionality part

Requirements 35

Example

Use Case 1: Buy stocks

Primary Actor: Purchaser

Goals of Stakeholders:

 Purchaser: wants to buy stocks

 Company: wants full transaction info

Precondition: User already has an account

Requirements 36

Example …

 Main Success Scenario

1. User selects to buy stocks

2. System gets name of web site from user for
trading

3. Establishes connection

4. User browses and buys stocks

5. System intercepts responses from the site and
updates user portfolio

6. System shows user new portfolio stading

Requirements 37

Example…

 Alternatives
 2a: System gives err msg, asks for new

suggestion for site, gives option to cancel

 3a: Web failure. 1-Sys reports failure to
user, backs up to previous step. 2-User
exits or tries again

 4a: Computer crashes

 4b: web site does not ack purchase

 5a: web site does not return needed info

Requirements 38

Example 2

 Use Case 2: Buy a product

 Primary actor: buyer/customer

 Goal: purchase some product

 Precondition: Customer is already
logged in

Requirements 39

Example 2…

 Main Scenario

1. Customer browses and selects items

2. Customer goes to checkout

3. Customer fills shipping options

4. System presents full pricing info

5. Customer fills credit card info

6. System authorizes purchase

7. System confirms sale

8. System sends confirming email

Requirements 40

Example 2…

 Alternatives

 6a: Credit card authorization fails

 Allows customer to reenter info

 3a: Regular customer

 System displays last 4 digits of credit card no

 Asks customer to OK it or change it

 Moves to step 6

Requirements 41

Example – An auction site

 Use Case1: Put an item for auction
 Primary Actor: Seller
 Precondition: Seller has logged in
 Main Success Scenario:

 Seller posts an item (its category, description, picture,
etc.) for auction

 System shows past prices of similar items to seller
 System specifies the starting bid price and a date when

auction will close
 System accepts the item and posts it

 Exception Scenarios:
 -- 2 a) There are no past items of this category
 * System tells the seller this situation

Requirements 42

Example – auction site..

 Use Case2: Make a bid

 Primary Actor: Buyer

 Precondition: The buyer has logged in

 Main Success Scenario:
 Buyer searches or browses and selects some item

 System shows the rating of the seller, the starting bid, the
current bids, and the highest bid; asks buyer to make a bid

 Buyer specifies bid price, max bid price, and increment

 Systems accepts the bid; Blocks funds in bidders account

 System updates the bid price of other bidders where needed,
and updates the records for the item

Requirements 43

 Exception Scenarios:

 -- 3 a) The bid price is lower than the current
highest

 * System informs the bidder and asks to rebid

 -- 4 a) The bidder does not have enough funds in
his account

 * System cancels the bid, asks the user to get
more funds

Requirements 44

Example –auction site..

 Use Case3: Complete auction of an item

 Primary Actor: Auction System

 Precondition: The last date for bidding has been
reached

 Main Success Scenario:
 Select highest bidder; send email to selected bidder and seller

informing final bid price; send email to other bidders also

 Debit bidder’s account and credit seller’s account
 Transfer from seller’s account commission amount to

organization’s account
 Unblock other bidders funds

 Remove item from the site; update records

 Exception Scenarios: None

Requirements 45

Example – summary-level Use Case

 Use Case 0 : Auction an item

 Primary Actor: Auction system

 Scope: Auction conducting organization

 Precondition: None

 Main Success Scenario:
 Seller performs put an item for auction

 Various bidders make a bid

 On final date perform Complete the auction of
the item

 Get feed back from seller; get feedback from
buyer; update records

Requirements 46

Requirements with Use Cases

 UCs specify functional requirements

 Other req identified separately

 A complete SRS will contain the use
cases plus the other requirements

 Note – for system requirements it is
important to identify UCs for which the
system itself may be the actor

Requirements 47

Developing Use Cases

 UCs form a good medium for
brainstorming and discussions

 Hence can be used in elicitation and
problem analysis also

 UCs can be developed in a stepwise
refinement manner
 Many levels possible, but four naturally

emerge

Requirements 48

Developing…

 Step 1: Identify actors and goals
 Prepare an actor-goal list
 Provide a brief overview of the UC
 This defines the scope of the system
 Completeness can also be evaluated

 Step 2: Specify main Success Scenarios
 For each UC, expand main scenario
 This will provide the normal behavior of the

system
 Can be reviewed to ensure that interests of all

stakeholders and actors is met

Requirements 49

Developing…

 Step 3: Identify failure conditions

 List possible failure conditions for UCs

 For each step, identify how it may fail

 This step uncovers special situations

 Step 4: Specify failure handling

 Perhaps the hardest part

 Specify system behavior for the failure conditions

 New business rules and actors may emerge

Requirements 50

Other Approaches to Analysis

Requirements 51

Data Flow Modeling

 Widely used; focuses on functions
performed in the system

 Views a system as a network of data
transforms through which the data flows

 Uses data flow diagrams (DFDs) and
functional decomposition in modeling

 The SSAD methodology uses DFD to
organize information, and guide analysis

Requirements 52

Data flow diagrams

 A DFD shows flow of data through the
system

 Views system as transforming inputs to
outputs

 Transformation done through transforms

 DFD captures how transformation occurs
from input to output as data moves
through the transforms

 Not limited to software

Requirements 53

Data flow diagrams…

 DFD

 Transforms represented by named
circles/bubbles

 Bubbles connected by arrows on which
named data travels

 A rectangle represents a source or sink and
is originator/consumer of data (often
outside the system)

Requirements 54

DFD Example

Requirements 55

DFD Conventions

 External files shown as labeled straight lines

 Need for multiple data flows by a process
represented by * (means and)

 OR relationship represented by +

 All processes and arrows should be named

 Processes should represent transforms,
arrows should represent some data

Requirements 56

Data flow diagrams…

 Focus on what transforms happen , how
they are done is not important

 Usually major inputs/outputs shown,
minor are ignored in this modeling

 No loops , conditional thinking , …

 DFD is NOT a control chart, no
algorithmic design/thinking

 Sink/Source , external files

Requirements 57

Drawing a DFD

 If get stuck , reverse direction

 If control logic comes in , stop and restart
 Label each arrows and bubbles
 Make use of + & *
 Try drawing alternate DFDs
 Leveled DFDs :
 DFD of a system may be very large
 Can organize it hierarchically
 Start with a top level DFD with a few bubbles
 then draw DFD for each bubble
 Preserve I/O when “ exploding”

Requirements 58

Drawing a DFD for a system

 Identify inputs, outputs, sources, sinks for the
system

 Work your way consistently from inputs to
outputs, and identify a few high-level
transforms to capture full transformation

 If get stuck, reverse direction

 When high-level transforms defined, then
refine each transform with more detailed
transformations

Requirements 59

Drawing a DFD for a system..

 Never show control logic; if thinking in
terms of loops/decisions, stop & restart

 Label each arrows and bubbles;
carefully identify inputs and outputs of
each transform

 Make use of + & *

 Try drawing alternate DFDs

Requirements 60

Leveled DFDs

 DFD of a system may be very large

 Can organize it hierarchically

 Start with a top level DFD with a few bubbles

 then draw DFD for each bubble

 Preserve I/O when “ exploding” a bubble so
consistency preserved

 Makes drawing the leveled DFD a top-down
refinement process, and allows modeling of
large and complex systems

Requirements 61

Data Dictionary

 In a DFD arrows are labeled with data items

 Data dictionary defines data flows in a DFD

 Shows structure of data; structure becomes
more visible when exploding

 Can use regular expressions to express the
structure of data

Requirements 62

Data Dictionary Example

 For the timesheet DFD

Weekly_timesheet – employee_name + id +
[regular_hrs + overtime_hrs]*

Pay_rate = [hourly | daily | weekly] +
dollar_amt

Employee_name = last + first + middle

Id = digit + digit + digit + digit

Requirements 63

DFD drawing – common errors

 Unlabeled data flows

 Missing data flows

 Extraneous data flows

 Consistency not maintained during
refinement

 Missing processes

 Too detailed or too abstract

 Contains some control information

Requirements 64

Prototyping

 Prototyping is another approach for
problem analysis

 Discussed it earlier with process – leads
to prototyping process model

Requirements 65

Requirements Validation

 Lot of room for misunderstanding

 Errors possible

 Expensive to fix req defects later

 Must try to remove most errors in SRS

 Most common errors

 Omission - 30%

 Inconsistency - 10-30%

 Incorrect fact - 10-30%

 Ambiguity - 5 -20%

Requirements 66

Requirements Review

 SRS reviewed by a group of people

 Group: author, client, user, dev team rep.

 Must include client and a user

 Process – standard inspection process

 Effectiveness - can catch 40-80% of req.
errors

Requirements 67

Summary

 Having a good quality SRS is essential for Q&P

 The req. phase has 3 major sub phases

 analysis , specification and validation

 Analysis

 for problem understanding and modeling

 Methods used: SSAD, OOA , Prototyping

 Key properties of an SRS: correctness,
completeness, consistency,unambiguousness

Requirements 68

Summary..

 Specification

 must contain functionality , performance ,
interfaces and design constraints

 Mostly natural languages used

 Use Cases is a method to specify the
functionality; also useful for analysis

 Validation - through reviews

Software Architecture 69

Software Architecture

Software Architecture 70

Background

 Any complex system is composed of
sub-systems that interact

 While designing systems, an approach
is to identify sub-systems and how they
interact with each other

 Sw Arch tries to do this for software

 A recent area, but a lot of interest in it

Software Architecture 71

Background…

 Architecture is the system design at the
highest level

 Choices about technologies, products to use,
servers, etc are made at arch level

 Not possible to design system details and then
accommodate these choices

 Arch must be created accommodating them

 Is the earliest place when properties like
rel/perf can be evaluated

Software Architecture 72

Architecture

 Arch is a design of the sw that gives a very
high level view of parts and they relate to
form the whole
 Partitions the sys in parts such that each part can

be comprehended independently

 And describes relationship between parts

 A complex system can be partitioned in many
diff ways, each providing a useful view
 Same holds true of software also

 There is no unique structure; many possible

Software Architecture 73

Architecture

 Defn: Software arch is the structure or
structures which comprise elements, their
externally visible properties, and relationships
among them
 For elements only interested in external properties

needed for relationship specification
 Details on how the properties are supported is not

important for arch
 The defn does not say anything about whether an

arch is good or not – analysis needed for it

 An arch description describes the different
structures of the system

Software Architecture 74

Key Uses of Arch Descriptions

 Understanding and communication
 By showing a system at a high level and

hiding complexity of parts, arch descr
facilitates communication

 To get a common understanding between
the diff stakeholders (users, clients,
architect, designer,…)

 For negotiation and agreement

 Arch descr can also aid in understanding of
existing systems

Software Architecture 75

Uses…

 Reuse

 A method of reuse is to compose systems from
parts and reuse existing parts

 This model is facilitated by reusing components at
a high level providing complete services

 To reuse existing components, arch must be
chosen such that these components fit together
with other components

 Hence, decision about using existing components
is made at arch design time

Software Architecture 76

Uses..

 Construction and evolution
 Some structures in arch descr will be used to

guide system development

 Partitioning at arch level can also be used for work
allocation to teams as parts are relatively
independent

 During sw evolution, arch helps decide what
needs to be changed to incorporate the new
changes/features

 Arch can help decide what is the impact of
changes to existing components on others

Software Architecture 77

Uses…

 Analysis
 If properties like perf, reliability can be determined

from design, alternatives can be considered during
design to reach the desired perf levels

 Sw arch opens such possibilities for software
(other engg disciplines usually can do this)

 E.g. rel and perf of a system can be predicted
from its arch, if estimates for parms like load etc is
provided

 Will require precise description of arch, as well as
properties of the elements in the description

Software Architecture 78

Architectural Views

 There is no unique arch of a sys

 There are different views of a sw sys

 A view consists of elements and relationships
between them, and describes a structure

 The elements of a view depends on what the
view wants to highlight

 Diff views expose diff properties

 A view focusing on some aspects reduces its
complexity

Software Architecture 79

Views…

 Many types of views have been proposed

 Most belong to one of these three types

 Module

 Component and Connector

 Allocation

 The diff views are not unrelated – they all
represent the same system

 There are relationships between elements of diff
views; this rel may be complex

Software Architecture 80

Views…

 Module view

 A sys is a collection of code units i.e. they
do not represent runtime entitites

 I.e. elements are modules, eg. Class,
package, function, procedure,…

 Relationship between them is code based,
e.g. part of, depends on, calls,
generalization-specialization,..

Software Architecture 81

Views…

 Component and Connector (C&C)
 Elements are run time entities called

components

 I.e. a component is a unit that has identity
in executing sys, e.g. objects, processes,
.exe, .dll

 Connectors provide means of interaction
between components, e.g. pipes, shared
memory, sockets

Software Architecture 82

Views…

 Allocation view

 Focuses on how sw units are allocated to
resources like hw, file system, people

 I.e. specifies relationship between sw
elements and execution units in the env

 Expose structural properties like which
process runs on which processor, which file
resides where, …

Software Architecture 83

Views…

 An arch description consists of views of diff
types, each showing a diff structure
 Diff sys need diff types of views depending on the

needs
 E.g. for perf analysis, allocation view is necessary;

for planning, module view helps

 The C&C view is almost always done, and has
become the primary view
 We focus primarily on the C&C view
 Module view is covered in high level design,

whose focus is on identifying modules

Software Architecture 84

Component and Connector View

 Two main elements – components and connectors

 Components: Computational elements or data stores

 Connectors: Means of interaction between comps

 A C&C view defines the comps, and which comps are
connected through which connector

 The C&C view describes a runtime structure of the
system – what comps exist at runtime and how they
interact during execution

 Is a graph; often shown as a box-and-line drawing

 Most commonly used structure

Software Architecture 85

Components

 Units of computations or data stores

 Has a name, which represents its role, and
provides it identity

 A comp may have a type; diff types rep by
diff symbols in C&C view

 Comps use ports (or interfaces) to
communicate with others

 An arch can use any symbols to rep
components; some common ones are shown

Software Architecture 86

Some Component examples…

Software Architecture 87

Connectors

 Interaction between components happen
through connectors

 A connector may be provided by the runtime
environment, e.g. procedure call

 But there may be complex mechanisms for
interaction, e.g http, tcp/ip, ports,…; a lot of
sw needed to support them

 Important to identify them explicitly; also
needed for programming comps properly

Software Architecture 88

Connectors…

 Connectors need not be binary, e.g. a
broadcast bus

 Connector has a name (and a type)

 Often connectors represented as protocol –
i.e. comps need to follow some conventions
when using the connector

 Best to use diff notation for diff types of
connectors; all connectors should not be
shown by simple lines

Software Architecture 89

Connector examples

Software Architecture 90

An Example

 Design a system for taking online survey of
students on campus
 Multiple choice questions, students submit online

 When a student submits, current result of the
survey is shown

 Is best built using web; a 3-tier architecture
is proposed
 Has a client, server, and a database components

(each of a diff type)

 Connector between them are also of diff types

Software Architecture 91

Example…

Software Architecture 92

Example…

 At arch level, details are not needed

 The connectors are explicitly stated,
which implies that the infrastructure
should provide http, browser, etc.

 The choice of connectors imposes
constraints on how the components are
finally designed and built

Software Architecture 93

Extension 1

 This arch has no security – anyone can
take the survey

 We want that only registered students
can take the survey (at most once)
 To identify students and check for one-only

submission, need a authentication server

 Need to use cookies, and server has to be
built accordingly (the connector between
server and auth server is http with cookies)

Software Architecture 94

Extension 1…

Software Architecture 95

Extension 2

 It was found that DB is frequently down

 For improving reliability, want that if DB
is down, student is given an older
survey result and survey data stored

 The survey data given can be outdated
by at most 5 survey data points

 For this, will add a cache comp, which
will store data as well as results

Software Architecture 96

Extension 2…

Software Architecture 97

Example…

 One change increased security, 2nd
increased performance and reliability

 I.e. Arch level choices have a big
impact on system properties

 That is why, choosing a suitable arch
can help build a good system

Software Architecture 98

Architectural Styles for C&C View

 Diff systems have diff C&C structure

 Some structures are general and are useful
for a class of problems – architectural styles

 An arch style defines a family of archs that
satisfy the constraint of that style

 Styles can provide ideas for creating arch for
a sys; they can be combined also

 We discuss a few common styles

Software Architecture 99

Pipe and filter

 Well suited for systems that mainly do data
transformations

 A system using this style uses a network of
transforms to achieve the desired result

 Has one component type – filter

 Has one connector type – pipe

 A filter does some transformation and passes
data to other filters through pipes

Software Architecture 100

Pipe and Filter…

 A filter is independent; need not know the id
of filters sending/receiving data

 Filters can be asynchronous and are
producers or consumers of data

 A pipe is unidirectional channel which moves
streams of data from one filter to another

 A pipe is a 2-way connector

 Pipes have to perform buffering, and
synchronization between filters

Software Architecture 101

Pipe and filter…

 Pipes should work without knowing the
identify of producers/consumers

 A pipe must connect the output port of
one filter to input port of another

 Filters may have indep thread of control

Software Architecture 102

Example

 A system needed to count the
frequency of different words in a file

 One approach: first split the file into a
sequence of words, sort them, then
count the #of occurrences

 The arch of this system can naturally
use the pipe and filter style

Software Architecture 103

Example..

Software Architecture 104

Shared-data style

 Two component types – data repository and
data accessor

 Data repository – provides reliable permanent
storage

 Data accessors – access data in repositories,
perform computations, and may put the
results back also

 Communication between data accessors is
only through the repository

Software Architecture 105

Shared-data style…

 Two variations possible

 Black board style: if data is posted in a
repository, all accessors are informed; i.e.
shared data source is an active agent

 Repository style: passive repository

 Eg. database oriented systems; web
systems; programming environments,..

Software Architecture 106

Example

 A student registration system of a
university

 Repository contains all the data about
students, courses, schedules,…

 Accessors like admin, approvals,
registration, reports which perform
operations on the data

Software Architecture 107

Example…

Software Architecture 108

Example..

 Components do not directly
communicate with each other

 Easy to extend – if a scheduler is
needed, it is added as a new accessor
 No existing component needs to be

changed

 Only one connector style in this –
read/write

Software Architecture 109

Client-Server Style

 Two component types – clients and servers

 Clients can only communicate with the server,
but not with other clients

 Communication is initiated by a client which
sends request and server responds

 One connector type – request/reply, which is
asymmetric

 Often the client and the servers reside on
different machines

Software Architecture 110

Client-server style…

 A general form of this style is the n-tier
structure

 A 3-tier structure is commonly used by
many application and web systems

 Client-tier contains the clients

 Middle-tier contains the business rules

 Database tier has the information

Software Architecture 111

Some other styles

 Publish-subscribe style
 Some components generate events, and others

subscribe to them
 On an event, those component that subscribe to it

are invoked

 Peer-to-peer style
 Like object oriented systems; components use

services from each other through methods

 Communication processes style
 Processes which execute and communicate with

each other through message passing

Software Architecture 112

Architecture and Design

 Both arch and design partition the system
into parts and their org

 What is the relationship between design and
arch?
 Arch is a design; it is about the solution domain,

and not problem domain
 Can view arch as a very high level design focusing

on main components
 Design is about modules in these components that

have to be coded
 Design can be considered as providing the module

view of the system

Software Architecture 113

Contd…

 Boundaries between architecture and design
are not clear or hard

 It is for designer and architect to decide
where arch ends and design begins

 In arch, issues like files, data structure etc
are not considered, while they are important
in design

 Arch does impose constraints on design in
that the design must be consistent with arch

Software Architecture 114

Preserving the Integrity of
Architecture

 What is the role of arch during the rest of the
development process

 Many designers and developers use it for
understanding but nothing more

 Arch imposes constraints; the implementation must
preserve the arch

 I.e. the arch of the final system should be same as
the arch that was conceived

 It is very easy to ignore the arch design and go
ahead and do the development

 Example – impl of the word frequency problem

Software Architecture 115

Documenting Arch Design

 While designing and brainstorming,
diagrams are a good means

 Diagrams are not sufficient for
documenting arch design

 An arch design document will need to
precisely specify the views, and the
relationship between them

Software Architecture 116

Documenting…

 An arch document should contain
 System and architecture context

 Description of architecture views

 Across view documentation

 A context diagram that establishes the sys
scope, key actors, and data sources/sinks can
provide the overall context

 A view description will generally have a
pictorial representation, as discussed earlier

Software Architecture 117

Documenting…

 Pictures should be supported by
 Element catalog: Info about behavior,

interfaces of the elements in the arch

 Architectural rationale: Reasons for making
the choices that were made

 Behavior: Of the system in different
scenarios (e.g. collaboration diagram)

 Other Information: Decisions which are to
be taken, choices still to be made,..

Software Architecture 118

Documenting…

 Inter-view documentation
 Views are related, but the relationship is not clear

in the view
 This part of the doc describes how the views are

related (eg. How modules are related to
components)

 Rationale for choosing the views
 Any info that cuts across views

 Sometimes views may be combined in one
diagram for this – should be done if the
resulting diagram is still easy to understand

Software Architecture 119

Evaluating Architectures

 Arch impacts non-functional attributes like
modifiability, performance, reliability,
portability, etc
 Attr. like usability etc are not impacted

 Arch plays a much bigger impact on these
than later decisions

 So should evaluate a proposed arch for these
properties

 Q: How should this evaluation be done?
 Many different ways

Software Architecture 120

Evaluating Architectures…

 Procedural approach – follow a sequence of
steps
 Identify the attributes of interest to different

stakeholders

 List them in a table

 For each attribute, evaluate the architectures
under consideration

 Evaluation can be subjective based on experience

 Based on this table, then select some arch or
improve some existing arch for some attribute

Software Architecture 121

Summary

 Arch of a sw system is its structures
comprising of elements, their external
properties, and relationships

 Arch is a high level design

 Three main view types – module, component
and connector, and allocation

 Component and connector (C&C) view is
most commonly used

Software Architecture 122

Summary…

 There are some C&C styles that are
commonly used, e.g. pipe-and-filter,
shared data, client server,....

 An arch description should document
the different views and their
relationship – views can be combined

 Rationale and other supporting
information should also be captured

Software Architecture 123

Summary…

 Arch can be analyzed for various non-
functional attributes like performance,
reliability, security, etc

 ATAM is one approach for analyzing
architectures, which evaluates
attributes of interest under different
scenarios

