
Sofware Process 1

Software Engineering

 We have specified the problem domain
– industrial strength software

 Besides delivering the software, cost,
quality, and schedule are drivers

 Software engineering is defined as the
systematic approach for development of
(industrial strength) software

Sofware Process 2

Process, People, Technology

 Q&P is an essential goal

 Q&P depends on people, process, and
technology

 Processes help people become more
productive and create fewer errors

 Tools help people execute some tasks in
the process more efficiently and effectively

 So, process forms the core

Sofware Process 3

Software Process

 Process is distinct from product –
products are outcomes of executing a
process on a project

 SW Engg. focuses on process

 Premise: Proper processes will help
achieve project objectives of high QP

Sofware Process 4

The software Development
Problem

Sofware Process 5

Project and Process

 A software project is one instance of
the development problem

 Development process takes the project
from user needs to software

 There are other goals of cost schedule
and quality, besides delivering software

 Need other processes

Sofware Process 6

Software Process…

 Process: A sequence of steps performed to
achieve some goal

 Software Process: The sequence of steps
performed to produce software with high
quality, within budget and schedule

 Many types of activities performed by diff
people in a software project

 Better to view software process as comprising
of many component processes

Sofware Process 7

Component Software
Processes

 Two major processes
 Development – focuses on development and

quality steps needed to engineer the software

 Project management – focuses on planning and
controlling the development process

 Development process is the heart of software
process; other processes revolve around it

 These are executed by different people
 developers execute engg. Process

 project manager executes the mgmt proces

Sofware Process 8

Component Processes…

 Other processes
 Configuration management process:

manages the evolution of artifacts

 Change management process: how
changes are incorporated

 Process management process:
management of processes themselves

 Inspection process: How inspections are
conducted on artifacts

Sofware Process 9

Process Specification

 Process is generally a set of phases

 Each phase performs a well defined task
and generally produces an output

 Intermediate outputs – work products

 At top level, typically few phases in a
process

 How to perform a particular phase –
methodologies have been proposed

Sofware Process 10

ETVX Specification

 ETVX approach to specify a step
 Entry criteria: what conditions must be

satisfied for initiating this phase

 Task: what is to be done in this phase

 Verification: the checks done on the
outputs of this phase

 eXit criteria: when can this phase be
considered done successfully

 A phase also produces info for mgmt

Sofware Process 11

ETVX approach

Sofware Process 12

Development Process and
Process Models

Sofware Process 13

Software Project

 Project – to build a sw system within
cost and schedule and with high quality
which satisfies the customer

 Suitable process needed to reach goals

 Process should not just help produce
the software but help achieve the
highest Q&P

Sofware Process 14

Project’ s process and Process
Models

 For a project, the project’s process to
be followed is specified during planning

 A process model specifies a general
process that is optimal for a class of
problems

 A project may select its process using
one of the process models

Sofware Process 15

Development Process

 A set of phases and each phase being a
sequence of steps

 Sequence of steps for a phase -
methodologies for that phase.

 Why have phases

 To employ divide and conquer

 each phase handles a different part of the
problem

 helps in continuous validation

Sofware Process 16

Development Process

 Commonly has these activities:
Requirements analysis, architecture,
design, coding, testing, delivery

 Different models perform them in
different manner

Sofware Process 17

Process Models

 A process model specifies a general
process, usually as a set of stages

 This model will be suitable for a class of
projects

 I.e. a model provides generic structure
of the process that can be followed by
some projects to achieve their goals

Sofware Process 18

Waterfall Model

 Linear sequence of stages/phases

 Requirements – HLD – DD – Code –
Test – Deploy

 A phase starts only when the previous
has completed; no feedback

 The phases partition the project, each
addressing a separate concern

Sofware Process 19

Sofware Process 20

Waterfall…

 Linear ordering implies each phase should
have some output

 The output must be validated/certified

 Outputs of earlier phases: work products

 Common outputs of a waterfall: SRS,
project plan, design docs, test plan and
reports, final code, supporting docs

Sofware Process 21

Waterfall Advantages

 Conceptually simple, cleanly divides the
problem into distinct phases that can be
performed independently

 Natural approach for problem solving

 Easy to administer in a contractual
setup – each phase is a milestone

Sofware Process 22

Waterfall disadvantages

 Assumes that requirements can be
specified and frozen early

 May fix hardware and other
technologies too early

 Follows the “big bang” approach – all or
nothing delivery; too risky

 Very document oriented, requiring docs
at the end of each phase

Sofware Process 23

Waterfall Usage

 Has been used widely

 Well suited for projects where
requirements can be understood easily
and technology decisions are easy

 I.e. for familiar type of projects it still
may be the most optimum

Sofware Process 24

Prototyping

 Prototyping addresses the requirement
specification limitation of waterfall

 Instead of freezing requirements only
by discussions, a prototype is built to
understand the requirements

 Helps alleviate the requirements risk

 A small waterfall model replaces the
requirements stage

Sofware Process 25

Prototyping

Sofware Process 26

Prototyping

 Development of prototype

 Starts with initial requirements

 Only key features which need better
understanding are included in prototype

 No point in including those features that
are well understood

 Feedback from users taken to improve the
understanding of the requirements

Sofware Process 27

Prototyping

 Cost can be kept low
 Build only features needing clarification

 “quick and dirty” – quality not important,
scripting etc can be used

 Things like exception handling, recovery,
standards are omitted

 Cost can be a few % of the total

 Learning in prototype building will help in
building, besides improved requirements

Sofware Process 28

Prototyping

 Advantages: req will be more stable,
req frozen later, experience helps in the
main development

 Disadvantages: Potential hit on cost and
schedule

 Applicability: When req are hard to elicit
and confidence in reqs is low; i.e.
where reqs are not well understood

Sofware Process 29

Iterative Development

 Counters the “all or nothing” drawback of the
waterfall model

 Combines benefit of prototyping and waterfall

 Develop and deliver software in increments

 Each increment is complete in itself

 Can be viewed as a sequence of waterfalls

 Feedback from one iteration is used in the
future iterations

Sofware Process 30

Iterative Enhancement

Sofware Process 31

Iterative Development

 Products almost always follow it

 Used commonly in customized
development also

 Businesses want quick response for sw

 Cannot afford the risk of all-or-nothing

 Newer approaches like XP, Agile,… all
rely on iterative development

Sofware Process 32

Iterative Development

 Benefits: Get-as-you-pay, feedback for
improvement,

 Drawbacks: Architecture/design may
not be optimal, rework may increase,
total cost may be more

 Applicability: where response time is
important, risk of long projects cannot
be taken, all req not known

Sofware Process 33

Another Form of Iterative

 The first iteration does the
requirements and architecture in the
waterfall way

 The development and delivery is done
incrementally in iterations

Sofware Process 34

Another form of Iteration…

Sofware Process 35

Timeboxing

 Iterative is linear sequence of iterations

 Each iteration is a mini waterfall –
decide the specs, then plan the iteration

 Time boxing – fix an iteration duration,
then determine the specs

 Divide iteration in a few equal stages

 Use pipelining concepts to execute
iterations in parallel

Sofware Process 36

Time Boxed Iterations

 General iterative development – fix the
functionality for each iteration, then
plan and execute it

 In time boxed iterations – fix the
duration of iteration and adjust the
functionality to fit it

 Completion time is fixed, the
functionality to be delivered is flexible

Sofware Process 37

Time boxed Iteration

 This itself very useful in many situations

 Has predictable delivery times

 Overall product release and marketing
can be better planned

 Makes time a non-negotiable parameter
and helps focus attention on schedule

 Prevents requirements bloating

 Overall dev time is still unchanged

Sofware Process 38

Timeboxing – Taking Time Boxed
Iterations Further

 What if we have multiple iterations
executing in parallel

 Can reduce the average completion
time by exploiting parallelism

 For parallel execution, can borrow
pipelining concepts from hardware

 This leads to Timeboxing Process Model

Sofware Process 39

Timeboxing Model – Basics

 Development is done iteratively in fixed
duration time boxes

 Each time box divided in fixed stages

 Each stage performs a clearly defined task
that can be done independently

 Each stage approximately equal in duration

 There is a dedicated team for each stage

 When one stage team finishes, it hands over
the project to the next team

Sofware Process 40

Timeboxing

 With this type of time boxes, can use
pipelining to reduce cycle time

 Like hardware pipelining – view each
iteration as an instruction

 As stages have dedicated teams,
simultaneous execution of different
iterations is possible

Sofware Process 41

Example

 An iteration with three stages –
Analysis, Build, Deploy
 These stages are appx equal in many

situations

 Can adjust durations by determining the
boudaries suitably

 Can adjust duration by adjusting the team
size for each stage

 Have separate teams for A, B, and D

Sofware Process 42

Pipelined Execution

 AT starts executing it-1

 AT finishes, hands over it-1 to BT,
starts executing it-2

 AT finishes it-2, hands over to BT; BT
finishes it-1, hands over to DT; AT
starts it-3, BT starts it-2 (and DT, it-1)

 …

Sofware Process 43

Timeboxing Execution

 Software

Requirements Build Deploy

TB1

TB2

Requirements Build Deploy

TB2

Requirements Build Deploy

TB3

Requirements Build Deploy

TB4

Sofware Process 44

Timeboxing execution

 First iteration finishes at time T

 Second finishes at T+T/3; third at T+2
T/3, and so on

 In steady state, delivery every T/3 time

 If T is 3 weeks, first delivery after 3
wks, 2nd after 4 wks, 3rd after 5 wks,…

 In linear execution, delivery times will
be 3 wks, 6 wks, 9 wks,…

Sofware Process 45

Timeboxing execution

 Duration of each iteration still the same

 Total work done in a time box is also
the same

 Productivity of a time box is same

 Yet, average cycle time or delivery time
has reduced to a third

Sofware Process 46

Team Size

 In linear execution of iterations, the
same team performs all stages

 If each stage has a team of S, in linear
execution the team size is S

 In pipelined execution, the team size is
three times (one for each stage)

 I.e. the total team size in timeboxing is
larger; and this reduces cycle time

Sofware Process 47

Team Size

 Merely by increasing the team size we
cannot reduce cycle time - Brook’s law

 Timeboxing allows structured way to
add manpower to reduce cycle time

 Note that we cannot change the time of
an iteration – Brook’s law still holds

 Work allocation different to allow larger
team to function properly

Sofware Process 48

Work Allocation of Teams

Requirements

Team

Requirements
Analysis for TB1

Requirements
Analysis for TB3

Requirements
Analysis for TB2

Requirements
Analysis for TB4

Build Team

Deployment

Team

Build for TB1 Build for TB2 Build for TB3

Deployment for TB1Deployment for TB2

Build for TB4

Deployment for TB3

Requirements

Team

Requirements
Analysis for TB1

Requirements
Analysis for TB3

Requirements
Analysis for TB2

Requirements
Analysis for TB4

Build Team

Deployment

Team

Build for TB1 Build for TB2 Build for TB3

Deployment for TB1Deployment for TB2

Build for TB4

Deployment for TB3

Sofware Process 49

Timeboxing

 Advantages: Shortened delivery times,
other adv of iterative, distr. execution

 Disadvantages: Larger teams, proj
mgmt is harder, high synchronization
needed, CM is harder

 Applicability: When short delivery times
v. imp.; architecture is stable; flexibility
in feature grouping

Sofware Process 50

RUP Model

 Rational Unified Process is another iterative
model

 Software development is divided into cycles,
each cycle delivering a fully working system

 Each cycle executed as separate project

 Execution of a cycle is broken into four
consecutive phases, each phase ending with
a milestone achievement

Sofware Process 51

Phases in a Project

 Phases in a project
 Inception phase: ends with Lifecycle Objectives

milestone; vision and high level capability of
system defined

 Elaboration phase: Lifecycle architecture
milestone; most requirements defined and
architecture designed

 Construction phase: Initial operational capability
milestone

 Transition phase: Product release; transition
product from development to production

Sofware Process 52

Phases and Milestones

Sofware Process 53

Execution of phases

 Each phase itself can be done in
multiple iterations, each iteration having
an external/internal customer

 Generally construction has multiple
iterations; elaboration can also be
meaningfully done in multiple iterations

Sofware Process 54

Core workflows and phases

 Engineering tasks are called core
process workflows

 These sub processes correspond to
tasks of requirements, design,
implementation, testing, proj mgmt, etc

 Many sub processes may be active in a
phase, the volume of activity generally
differs depending on the project

Sofware Process 55

Sub processes and phases

Sofware Process 56

RUP

 Sub processes are active in all phases

 Volume of activity in each phase differs
depending on the project

 Hence, a project can use RUP to implement
waterfall by having requirements process be
active only in the elaboration phase

 Or prototyping by having a lot of construction
activity in the elaboration phase

 RUP is therefore a flexible framework

Sofware Process 57

Extreme Programming or Agile
Process Model

 Agile approaches developed in 90s as a reaction to
document driven approaches

 Most agile approaches have some common principles
 Working software is the measure of progress

 Software should be delivered in small increments

 Even late changes should be allowed

 Prefer face to face commn over documentation

 Continuous feedback and customer involvement is necessary

 Prefer simple design which evolves

 Delivery dates are decided by the empowered teams

 …

Sofware Process 58

XP…

 Many agile methodologies have been
proposed; extreme programming (XP) is
one of the most popular

 An XP project starts with user stories,
which are short descr of user needs

 Details are not included

 Each user story written on a separate card
so they can be combined in diff ways

Sofware Process 59

Overall Process

 Team estimates how long it will take to
implement a user story
 Estimates are rough

 Release planning is done
 Defines which stories are to be built in which

release, and dates for release

 Frequent and small releases encouraged

 Acceptance tests also built from user stories; used
to test before release

 Bugs found in AT are fixed in next release

Sofware Process 60

Overall Process

 Development done in iterations of a few
weeks each
 Iteration starts with planning, in which

stories to be implemented are selected –
high risk high value are chosen first

 Details of stories obtained during the
development and implemented

 Failed AT of previous iteration are also
fixed

Sofware Process 61

XP – Overall Process

Sofware Process 62

An Iteration

 An iteration execution has some unique
practices
 Pair programming: programming is done in

pairs of programmers

 Test driven development – automated unit
tests written before the code

 Simple solutions, refactoring for improving
the design when need arises

 Frequent integration

Sofware Process 63

An Iteration

Sofware Process 64

XP - Summary

 Well suited for situations where volume
and pace of requirements is high

 Customer is willing to engage heavily
with the team

 The team is collocated and is not too
large (less than 20 or so)

 Requires strong capability in team
members

Sofware Process 65

Summary – waterfall

Strength Weakness Types of Projects

Simple

Easy to execute

Intuitive and logical

Easy contractually

All or nothing – too
risky

Req frozen early

May chose outdated
hardware/tech

Disallows changes

No feedback from
users

Encourages req
bloating

Well understood
problems, short
duration projects,
automation of
existing manual
systems

Sofware Process 66

Summary – Prototyping

Strength Weakness Types of Projects

Helps req elicitation

Reduces risk

Better and more
stable final system

Front heavy

Possibly higher cost
and schedule

Encourages req
bloating

Disallows later
change

Systems with novice
users; or areas with
req uncertainity.

Heavy reporting
based systems can
benefit from UI proto

Sofware Process 67

Summary – Iterative

Strength Weakness Types of Projects

Regular deliveries,
leading to biz benefit

Can accommodate
changes naturally

Allows user feedback

Avoids req bloating

Naturally prioritizes
req

Allows reasonable
exit points

Reduces risks

Overhead of
planning each
iteration

Total cost may
increase

System arch and
design may suffer

Rework may increase

For businesses where
time is imp; risk of
long projects cannot
be taken; req not
known and evolve
with time

Sofware Process 68

Summary – Timeboxing

Strength Weakness Types of Projects

All benefits of
iterative

Planning for
iterations somewhat
easier

Very short delivery
times

PM becomes more
complex

Team size is larger

Complicated – lapses
can lead to losses

Where very short
delivery times are
very important

Where flexibility in
grouping features

Arch is stable

Sofware Process 69

Summary – RUP

Strength Weakness Types of Projects

All benefits of
iterative

Provides a flexible
framework for a
range of projects

For each project, one
has to design the
process

Can be applied to a
wide range as it
allows flexibility

Sofware Process 70

Summary – XP

Strength Weakness Types of Projects

Agile and responsive

Short delivery cycles

Continuous feedback
can lead to better
acceptance

Can tend to become
ad-hoc

Lack of
documentation can
be an issue

Continuous code
change is risky

Where requirements
are changing a lot,
customer is deeply
engaged in
development, and
where the size of the
project is not too
large

Sofware Process 71

Using Process Model in a
Project

 Model to be used should be selected
based on the nature of the problem

 Example: Build a small auction system
for a Univ, tight schedule, some core
req, customer time only in start,…

 Suitable model: Iterative delivery – do
req in 1st iter; and two rounds of
delivery; minimizes risk,…

Sofware Process 72

Using Process Models..

 Example: Highly competitive product;
req change rapidly; outsourcing is
desired for reducing cost,…

 Model: XP not OK as collocated team
needed; iterative may not deliver
rapidly enough; timeboxing best suited

Sofware Process 73

Summary

 Process is a means to achieve project
objectives of high QP

 Process models define generic process,
which can form basis of project process

 Process typically has stages, each stage
focusing on an identifiable task

 Many models for development process
have been proposed

Sofware Process 74

Summary

 Development process models discussed

 Waterfall

 Prototyping

 Iterative

 RUP

 Timeboxing

 Agile or XP

 Each has its strengths and weaknesses and
will work well for some types of projects

Sofware Process 75

Project Management Process

Sofware Process 76

Background

 Development process divides
development into phases and activities

 To execute it efficiently, must allocate
resources, manage them, monitor
progress, take corrective actions, …

 These are all part of the PM process

 Hence, PM process is an essential part
of executing a project

Sofware Process 77

PM Process Phases

 There are three broad phases

 Planning

 Monitoring and control

 Termination analysis

 Planning is a key activity that produces
a plan, which forms the basis of
monitoring

Sofware Process 78

Planning

 Done before project begins

 Key tasks
 Cost and schedule estimation

 Staffing

 Monitoring and risk mgmt plans

 Quality assurance plans

 Etc.

 Will discuss planning in detail later

Sofware Process 79

Monitoring and control

 Lasts for the duration of the project and
covers the development process

 Monitors all key parameters like cost,
schedule, risks

 Takes corrective actions when needed

 Needs information on the dev process –
provided by metrics

Sofware Process 80

Termination Analysis

 Termination analysis is performed when
the development process is over

 Basic purpose: to analyze the perf of
the process, and identify lessons
learned

 Also called postmortem analysis

Sofware Process 81

Relationship with Dev Process

Sofware Process 82

Summary

 Process has a major impact on the quality and
productivity

 Different processes at work in a software project

 We have focused on development process and
project management process

 Process models are general process structures, that
work well for some types of problems

 A project should select a process model that is best
suited for it (and tailor it to meet its requirements)

