ADS@Unit-2[|Balanced Trees]

Unit 11 : Balanced Trees : AVL Trees: Maximum Height of an AVL Tree, Insertions and
Deletions. 2-3 Trees: Insertion, Deletion, Priority Queues , Binary Heaps: Implementation of
insert and delete min, creating heap.
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Tree: Tree is non-linear data structure that consists of root node and potentially many levels
of additional nodes that form a hierarchy.

> A tree can be empty with no nodes called the null or empty tree.
A tree is a structure consisting of one node call the root and one or more subtrees.
Descendant:- A node reachable by repeated proceeding form parent to child.
Ancestor:- a node reachable by repeated proceeding from child to parent.
Degree:- the number of sub-trees of a node, means the degree of an element (node) is
the number of children it has. The degree of a leaf node is always 0(zero).
Siblings:- Nodes with the same parent.
Height:- number of nodes which must be traversed from the root to the reach a leaf of
atree.
Examples
Tree associated with a document
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Binary Tree: - A binary tree is a tree data structure in which each node has at most two
children, which referred as the left and right child.
Full Binary Tree or Complete Trees:
A binary tree of height is ‘h’ and contains exactly “2"-1” elements is called full binary tree.
Full Binary Tree
H=4 (levels+1 of root node)
n->number elements= 2"-1=15
(Another definition of full binary tree is, each leaf is same
distance from the root)

O

Linked list representation of binary tree:

Left Right
pointer pointes

// Binary tree node structure
struct BinaryTreeNode

{
int data;
BinaryTreeNode *left, *right;
D | sl F sl [ TG ] Ftemp;
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Operations on Binary Tree:
Create(), Insert(), Delete(), Size(), Inorder(), Preorder(), Postorder()

Binary Search Tree:
Binary search tree is also called ordered/sorted binary tree. Means Binary Search Tree is a
node based binary tree data structure but it should satisfies following properties
> Every element (node) has a key or value & no two elements have the same key or
value, therefore all keys are distinct.
» The left sub-tree of a node contains only nodes with key less than the root node’s key
value.
» The right sub-tree of a node contains only nodes with key greater than the root node’s
key value.
» The left and right sub-tree each must also be a binary search tree.
» A unique path exists from the root to every other node.

Binary search tree Example
Type Tree
Invented 1960

Invented by P.F. Windley, A.D. Booth, A.J.T. Colin, and
T.N. Hibbard

Time complexity in big O notation

Average Worst case
Space O(n) O(n) A binary search tree of size 9 &-J
Search O(log n) o(n) and depth 3, with root 8 and leaves
1.4.7 and 13
Insert O(log n) O(n)
Delete O(log n) O(n)

Balanced Tree

Balancing or self-balancing (Height balanced) tree is a binary search tree.

Balanced tree is any node based binary search tree that automatically keeps its height
(Maximum number of levels below the root) small in the face of arbitrary item insertion and
deletion.

Use of Balanced tree:

Tree structures support various basic dynamic set operations including search, minimum,
maximum, insert and deletion in the time proportional to the height of the tree.

Ideally, a tree will be balanced and the height will be “log N where >number of nodes in
the tree.

To ensure that the height of the tree is as small as possible for provide the best running time.
Examples of balancing tree
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VL-Tree

. 2-3-tree
Balancing Tre B-Tre<
2-3-4-treg

Red Black-Tree

AVL Trees:

Introduction: An AVL tree (Adelson-Velskii and Landis' tree, named after the inventors) is
a self-balancing binary search tree, invented in 1962

Definition: An AVL tree is a binary search tree in which the balance factor of every node,
which is defined as the difference b/w the heights of the node’s left & right sub trees is either
Oor+lor-1.

Balance factor = ht of left sub tree — ht of right sub tree.

Where ht=height

Example:
Tree A (AVL) Tree B (not AVL)
2-2=0 =3
1 St é’ R 1 1 @\
(a3 O, 4
o N0 o o 0 1

@@ 6 @ @ & @&
height of node = h (‘(:/5

balance factor = h;.;-hgm

AVL tree BST ( not AVL tree )
2
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Structure or pseudo code for avl tree:

struct node
{ int data;

int ht;
}node;

struct node *left,*right;

node *rotateright(node *);
node *rotateleft(node *);
node *RR(node *);

node *LL(node *);

node *LR(node *);

node *RL(node *);

node *insert(node *,int);

int height( node *);

node *Delete(node *,int);

int BF(node *);

Inserting and Deleting on AVL Trees
Problem:

After insert/delete: load balance might be changed to +2 or -2 for certain nodes.
load after each step

_ re-balance

Requirements: re-balancing must have O (log n) worst-case complexity
Solution: Apply certain “rotation” operations

AVL tree insertion:

After inserting a node, it is necessary to check each of the node's ancestors for consistency
with the rules of AVL. The balance factor is calculated as follows: balanceFactor = height
(left subtree) - height(right subtree). If insertions are performed serially, after each insertion,
at most one of the following cases needs to be resolved to restore the entire tree to the rules of
AVL.

Let the node that needs rebalancing be o.
4 possible situations to insert in a tree

1. Insert into the left sub-tree of the left child

2. Insert into the right sub-tree of the right child
3. Insert into the left sub-tree of the right child
4. Insert into the right sub-tree of the left child

If an insertion of a new node makes an avl tree unbalanced, we transform the tree by a
rotation. There are 4-types of rotation we have.

LL rotation

Single rotation _
RR Rotation

R
Double Rotation:

rotation

rotation
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Example of Insertion of 1, 2, 3, 4,5, 0, 7, 6 into an AVL Tree

All insertions are right-right and so rotations are all single rotate from the right. All but two insertions require
re-balancing:

[ || Iem=waw—m & f =2 I»
n Inm=w= & f 1 2

& N LI

e e

m insert { 3)

| e~ Irn=ew ik =~ s e —

W Insert (S5 )
— (=2
{“ME«' é .

G5 CES Tor | S
- 3 &
=k
Wl Insert{ 0} 12H> u RN r:;::?:‘{:]—l
] o <o i ,145', \}:/E;P_ .
[ a3 (ﬂh & TG E&r
(o))" R 50 <ol

All insertions are right-left and so double rotations take place form left-right and right-to left

Will Insert | S ) (E) —z izf‘
ol 4 a4
& T & ES &
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Another example. The insertion sequence is: 50, 25, 10, 5, 7, 3, 30, 20, 8, 15

(50 sirt19|h=3ft (25) (25)
G G5  as0o G & OERS
i &

(25) double @

rot. left

@ @ at 10 = o
(53 © 19

(59

double
rot. right
atl =
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node * insert(node *T,int X) int height(node *T)
{ {
if(T==NULL) int Ih,rh;
if(T==NULL)
T=(node*)malloc(sizeof(node)); return(0);
T->data=x; if(T->left==NULL)
T->left=NULL,; 1h=0;
T->right=NULL; else
} Ih=1+T->left->ht;
else if(T->right==NULL)
if(x > T->data) /l'insert in right sub-tree rh=0;
else

T->right=insert(T->right,x); rh=1+T->right->ht;

if(BF(T)==-2) if(Ilh>rh)
if(x>T->right->data) return(lh);

T=RR(T); return(rh);
else }
T=RL(T);
} int BF(node *T)
else {

if(x<T->data) // insert in left sub-tree int Ih, rh;

{ if(T==NULL)
T->left=insert(T->left, x); return(0);
if(BF(T)==2) if(T->left==NULL)

if(x < T->left->data) 1h=0;
T=LL(T); else

else Ih=1+T->left->ht;
T=LR(T); if(T->right==NULL)

} rh=0;

T->ht=height(T); else

return(T); rh=1+T->right->ht;

} return(lh-rh);
}
node * RR(node *T) node * LL(node *T) node * LR(node *T)

T=rotateleft(T);

T=rotateright(T);

T->left=rotateleft(T->left);

return(T); return(T); T=rotateright(T);

} } return(T);

}
node * RL(node *T) node * rotateleft(hode node * rotateright(node *x)
{ *X)

T- { node *y;
>right=rotateright(T- node *y; y=x->left;
>right); y=x->right; x->left=y->right;

T=rotateleft(T); x->right=y->left; y->right=x;

return(T); y->left=x; x->ht=height(x);
} x->ht=height(x); y->ht=height(y);

y->ht=height(y);
return(y);

return(y);
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Search Operation in avl tree:

Search operation of avl tree is same as the search operation of binary search tree. Means

given element is checked with the root element,

» If the given element is match with the root element then return the value
> If the given element is less than the root element then the searching operation is

continued at left sub-tree of the tree.

> If the given element is greater than the root element then the searching operation is

continued at right sub-tree of the tree.

node *temp;

temp = root;

while (temp = NULL) {
if (temp->data == key) {

return temp;

}
*parent = temp;
if (temp->data > key)

else

}
return NULL,;

}

node *search(node *root, int key, node **parent) {

printf("\nThe %d Element is Present”, temp->data);

temp = temp->Ichild;

temp = temp->rchild;
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Deletion of node in avl tree:
e Deletion:
mCase 1: if X is a leaf, delete X
mCase 2: if X has 1 child, use it to replace X
mCase 3: if X has 2 children, replace X with its inorder predecessor(and recursively delete it)
Algorithm:
Step 1: Search the node which is to be deleted.
If the node to be deleted is a leaf node then simply delete that node and make be null
If the node to be deleted is not a leaf-node, i.e., that node have one or two children
then that node must be swapped with its in order successor. Once the node is swapped we can
remove the required node.
Step: 2:- Now we have to traverse back up the path towards the root node checking balance
factor of every nod along that path.
Step 3:-If we encounter unbalancing in some sub tree than balance that sub tree using
appropriate single or double rotations.

Delete 55 (case 1)

Delete 50 (case 2)
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Delete 60 (case 3)

Delete 55 (case 3)

prev
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Delete 50 (case 3)
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Delete 40 (case 3)

Delete 40 : Rebalancing

Delete 40: after rebalancing
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node * Delete(node *T,int x)
{ node *p;
if(T==NULL) { return NULL; }
else
if(x > T->data) I insert in right subtree
{
T->right=Delete(T->right,x);
if(BF(T)==2)
if(BF(T->left)>=0)
T=LL(T);
else
T=LR(T);
}
else
If(x<T->data) {
T->left=Delete(T->left,x);
if(BF(T)==-2)//Rebalance during windup
if(BF(T->right)<=0)
T=RR(T);
else
T=RL(T); }
Else {
//data to be deleted is found
if(T->right 1I=NULL)
{ /ldelete its inorder succesor
p=T->right;
while(p->left I= NULL)
p=p->left;
T->data=p->data;
T->right=Delete(T->right,p->data);
iIf(BF(T)==2)//Rebalance during windup
if(BF(T->left)>=0)

T=LL(T);
else
T=LR(T);
}
else

return(T->left);

}
T->ht=height(T);
return(T);

AVL tree
Type Tree
Invented 1962

G. M. (A)delson,
Invented by (V)elskii &
E. M.( L)andis

Time complexity in big O notation
Average Worst case
Space O(n) Oo(n)
Search O(logn) O(log n)
Insert O(logn) O(logn)
Delete O(logn) O(logn)
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'l.I GORITHMS

= =1 Pseudocode

“"l"'

RB-INSERT(7, x)
TREE-INSERT(T. x)
color[x] <~ RED 1> only RB property 3 can be violated
while x = root[ T] and color|p|x]] =
do if p[x] = lefi[p|p[x]]
then v « right[p[p[x]] >y = aunt/uncle of x
if color[y] =RED
then (Case 1)
else if x = right|p[x]]
then (Case 2) 1> Case 2 falls mnto Case 3
(Case 3)
else (“then” clause with “/eff” and “right” swapped)
color{root|T]] <~ BLACK

B-Tree:
B-Tree is a self balancing search tree.
B-Tree is a tree data structure that keeps data sorted and allows searches, sequential access,
insertions and deletions in logarithmic time (O(log n)).
Properties of B-Tree:
» The root has at least one key.
All leaves (external node) are at the same level.
Keys are stored in non-decreasing order.
A B-tree of order M is a tree then
The root is either a leaf or has between 2 and m Childs.

YV V V

» Non-root nodes have at least |_M"'2-| sub-trees.
Example:
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2:34 tree:

A B-tree of order 4 is known as a 2-3-4 tree.

A 2-3-4 tree (also called a 2—4 tree) is a self-balancing data structure that is commonly used
to implement dictionaries. The numbers mean a tree where every node with children (internal
node) has either two, three, or four child nodes:

e a2-node has one data element, and if internal has two child nodes;

e a3-node has two data elements, and if internal has three child nodes;

e a4-node has three data elements, and if internal has four child nodes.

Z-node I-node d-node
Properties
o Every node (leaf or internal) is a 2-node, 3-node or a 4-node, and holds one, two, or three
data elements, respectively.
o All leaves are at the same depth (the bottom level).
o All data is kept in sorted order.
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Example:

Insert 25

2-3-Tree:

A b-tree of order 3 is known as 2-3-tree.

A 2-3 tree is a tree (B-tree) in which each internal node (non leaf) has either 2 or 3 children
and all leaves are at the same level.

2 node 3 node

Properties of 2-3-tree:
» Every non-leaf is a 2-node or a 3-node. A 2-node contains one data item and has two
children. A 3-node contains two data items and has 3 children.
» All leaves are at the same level (the bottom level)
> All data is kept in sorted order
» Every leaf node will contain 1 or 2 fields.
Example:

17 21
7 il i8 20 26 31
2 4 5 6 8 9 A2 16 22 23 25 27 29 30 32 35
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B-trce of order 3 not a B-trec
5] 22 | 26 3] 22
8 20 2

4 28 | 30

7 s
|2IZII I2‘}| |28|3El I

BN

Operations on a 2-3 Tree:

The lookup operation (Search)

Recall that the lookup operation needs to determine whether key value Kk is in a 2-3 tree T.
The lookup operation for a 2-3 tree is very similar to the lookup operation for a binary-search
tree. There are 2 base cases:

1. T is empty: return false
2. Tisa leaf node: return true iff the key value in T is k

And there are 3 recursive cases:

1. k<=T.leftMax: look up k in T's left subtree
2. T.leftMax < k <= T.middleMax: look up k in T's middle subtree
3. T.middleMax < k: look up k in T's right subtree

Constructing 2-3-tree: -
Eﬁ;f—[’on@imud' 2-3 tee Ea wmﬂ &ohowmct e]ement

30, 20,35.18 &0 , 65,26 ;8% 85, 30,10 , Lo ;5

s
B@=-- ! e
[EAIES)

B ; :
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; NP

Inserting Items
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The goal of the insert operation is to insert key k into tree T, maintaining T's 2-3 tree

properties. Special cases are required for empty trees and for trees with just a single (leaf)
node.

How do we insert32?

Cio

Final Result

Deleting Items

After deleting an element in the tree (2-3-tree), the resulting tree must be 2-3-tree, means it
must the resulting tree must satisfy all the properties of B-tree of order 3.

Deleting key k is similar to inserting: there is a special case when T is just a single (leaf) node
containing k (T is made empty); otherwise, the parent of the node to be deleted is found, then
the tree is fixed up if necessary so that it is still a 2-3 tree.

Consider following example for deleting nodes form 2-3-tree.
Deleting70:

C"IC)

Delete 100
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—m—— MNode become:

Delete value from leafl Merge by moving 20 dowvn and removing emipty leafl

Merge: move 50 down, adopt empty leaf's child, remove empty node Remove empty root

2-3 Trees

* These are not binary search trees ....
* Because they are not necessarily binary

*  They maintain all leaves at same depth

*  But number of children can vary

e 2-3tree:2 or 3 children

2-3-4 tree: 2, 3, or 4 children
e B-tree: B/2 to B children (roughly)

2-3 Trees
* 2-3tree named for # of possible children of each node

* Each node designated as either 2-node or 3-node

* A2-nodeis the same as a binary search tree node
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* A 3-node contains two data fields, first < second,

* and references to three children:
*  First holds values < first data field
» Second holds values between the two data fields
* Third holds values > second data field

* All of the leaves are at the (same) lowest level

Searching a 2-3 Tree
1. ifris null, return null (not in tree)

2. ifrisa2-node

3. if item equals datal, return datal
4, if item < datal, search left subtree
5. else search right subtree

6. else//risa3-node

7. if item < datal, search left subtree
8. if item = datal, return datal
9. if item < data2, search middle subtree

10. if item = data2, return data 2
11. else search right subtree

Inserting into a 2-3 Tree (3)

:=|<';|..|F:F'Il ?-TE- o 9
art o
N O OO G )

FlIz U RE T171-3&
A irtuaa |l Imssrtioae

FISGSURE 11.37 '@

Fesult of Propagating
15t Z—Flovdke Parsot a

FIzURE 11.358
Insertimg 5, 10, and 20

(7. 153
<y @, 13 @, 23
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FIGURE T11.3%
WirtLally Inserting 13

FIGWURE 17.-.430
wirtally irssrtimg 11

FIGWRE 171.-41
Feesult of pdaking 11
the Mewy Fuoot

* Inserting into 3-node with 3-node parent:

T SR N

* “Overload” parent, and repeat process higher up:

FIGURE 11.38
Inserting S, 10, and 20

FIGURE 11.39
Virtually Inserting 13

a5 &S

FIGURE 11.40
Virtually Irserting 11

FIGURE 11.41
Result of Making 11
the New Root

Insert Algorithm for 2-3 Tree
1. if ris null, return new 2-node with item as data
2. if item matches r.datal or r.data2, return false

3. ifrisaleaf

4, if ris a 2-node, expand to 3-node and return it

5. split into two 2-nodes and pass them back up

6. else

7. recursively insert into appropriate child tree

8. if new parent passed back up

9. if will be tree root, create and use new 2-node

(7. 153
@@. 1D
(7. 153

<
. 23

Page 28 of 27



ADS@Unit-2[|Balanced Trees]

10. else recursively insert parentinr
11. return true
2-3 Tree Performance
« If height is h, number of nodes in range 2"™1 to 3"-1
* height in terms of # nodes n in range log, n to logs n
* Thisis O(log n), since log base affects by constant factor
* So all operations are O(log n)

Removal from a 2-3 Tree
*  Removing from a 2-3 tree is the reverse of insertion

* Iftheitemin a leaf, simply delete it

* Ifnotinaleaf
* Swap it with its inorder predecessor in a leaf
* Then delete it from the leaf node

Redistribute nodes between siblings and parent

FIGURE 11.42
Fermoving 13 from a
2-3 Tres

FIGLWURE 11.43

2-3 Tres After Redistri-
buticrn of Hodes
Fesuilting from Removal

FIGURE 11.44
Rermcwing 11 from the
2-3 Tres (Stap 1)

FIGURE 11.45
2-3 Tree Aftar
Femeying 11
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FIzURE 11.46
After Removing |
limt=rmmediate St=p)

FIGURE 11.47 (7. 173

After Removing 1

iFinal Foormm) m m g

Lec-25 2-3 Trees

Bedatabuly 3n oyt /et

> bLacowzs “‘b::.
datede (P, p— pe=~t)

[ 1] »>1 o> 40:33/41:30

Figure 5.25: Deletion in 2-3 trees: An Example
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L l delete(7). This leads to deletion

of node v

leads to deletion of p and p”
and decreases the number of levels by 1

Deleting ltems

Swap with inorder successor
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Deleting ltems

Daloiin

Swap with inorder successor

Deleting Iltems

Ll ii — L o 4 £ —
S -

(b) 80 20 (©

2 & @9

Delete value from leaf Merge nodes by deleting empty leaf and moving 80 down

Deleting lterm s

Resalt

Deleting ltems

Delete 100

(e)
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Deleting Iltems

Deleting 7100

(@)

(202
60 80 (=) @o) - —— > (&o) (60)

Delete value from leaf Doesn’t work Redistribute

Deleting ltems

Result

(d)

Deleting ltems

Delete SO

Deleting ltems

Deleting SO ...

Swap with inorder successor
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Deleting ltems

Deleting S0 ...

) @ e —— Node becormes empity
&) =
Delete value from leaf Merge by moving 90 down and removing empty leaf
Deleting Iltems
Deleting 80 ...
(d)

° -s«— RooO! becomes empty
4

Merge: move S0 down, adopt empty leaf's child, remove empty node Remove empty root

Deleting ltems
Einal Result

comparison with
binary search tree
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Deletion Algorithm |

Deleting item I:

7. Locate node n, which contains item [

N

If node n is not a leaf = swap | with inorder successor
—=> deletion always begins at a leaf

3. If leaf node n contains another item, just delete item [
else
try to redistribute nodes from siblings (see next slide)
if not possible, merge node (see next slide)

Deletion Algorithm I

Rodiodsibut
A sibling has 2 items:

(a)

Redistrnibute G

> redistribute item >
between siblings and
parent ) (2
Sibling Leaf
Merging =

No sibling has 2 items:
- merge node
- move item from parent
to sibling Sibling

Leaf
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Deletion Algorithm Il

()

Internal node n has no item left Reg‘ - ()

> redistribute oy (s) (%)
a b < d

Merging =4 () Merge ()

Redistribution not possible: S S Emp:,,:"a S

-> merge node noas

- move item from parent

to sibling 8 L,

- adopt child of n

If n's parent ends up without item, apply process recursively

Deletion Algorithm 1V

If merging process reaches the root and roof is without item
— delete root

(=) o
(—) Empty root

Height h

a (=]

—
Height h — 1
<

Priority Queue
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Now, check waiting time for each request to be complete.

Here, average waiting time for all requests (R1, R2, R3 and R4) is (20+22+32+37)/4 = 27 units of time.

Here, average waiting time for all requests (R1, R2, R3 and R4) is (2+7+17+37)/4 = 15 units of time.

Priority queue is a variant of queue data structure in which insertion is performed in the order of arrival and
deletion is performed based on the priority.

1.
2.

iISEmpty
insert()
findMax(
remove()

N
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There are 6 representations of max priority queve.

maxindex
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Max Heap

Max heap is a specialized full binary tree in which every parent node contains greater or equal value than its
child nodes. And last leaf node can be alone.
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