
AdvanceDataStructures-Unit-1(Dictionaries)

 Page1of 38

Unit I : Dictionaries :Sets, Dictionaries, Hash Tables, Open Hashing, Closed

Hashing(Rehashing Methods),Hashing

Functions(DivisionMethod,MultiplicationMethod,UniversalHashing),Analysisof

ClosedHashingResult(UnsuccessfulSearch,Insertion,SuccessfulSearch,Deletion),

HashTableRestructuring,SkipLists,AnalysisofSkipLists.

AdvanceDataStructures-Unit-1(Dictionaries)

 Page2of 38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page3of 38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page4of 38

Unit-I

Dictionaries
SET:-A set is a collection of welldefinedelements.The members ofasetare alldifferent.

A set is a group of “objects”
 People in a class: { Alice, Bob, Chris }
 Classes offered by a department: { CS 101, CS 202, … }
 Colors of a rainbow: { red, orange, yellow, green, blue, purple }
 States of matter { solid, liquid, gas, plasma }
 States in the US: { Alabama, Alaska, Virginia, … }
 Sets can contain non-related elements: { 3, a, red, Virginia }

• Although a set can contain (almost) anything, we will most often use sets of numbers
 All positive numbers less than or equal to 5: {1, 2, 3, 4, 5}
 A few selected real numbers: { 2.1, π, 0, -6.32, e }

(I) Tabular Form:

Listingalltheelementsofasetandseparatedby commasandenclosedwithincurlybrackets
{}.

EX: , ,

(II) DescriptiveForm:
Stateinwordstheelementsofaset.Thatis,thepropertyofelementsinthesetdefendastheset

AdvanceDataStructures-Unit-1(Dictionaries)

 Page5of 38

EX:

Set ofthe first five natural numbers.

Set of positive even integers less or equal to

fifty

.Set ofpositiveodd numbers.

(III)Set BuilderForm:
Writingin symbolic form the commoncharacteristic sharedbyall theelements ofthe sets.Ex:

 , ,

Descriptive form/Describe method/Statement form:

In this, well-defined description of the elements of the set is given and the same are enclosed in curly brackets.

For example:

(i) The set of odd numbers less than 7 is written as: {odd numbers less than 7}.

(ii) A set of football players with ages between 22 years to 30 years.

(iii) A set of numbers greater than 30 and smaller than 55.

2. Tabular form/ Listing method/ Roster form or tabular form:

In this, elements of the set are listed within the pair of brackets { } and are separated by commas.

For example:

(i) Let N denote the set of first five natural numbers.

Therefore, N = {1, 2, 3, 4, 5} → Roster Form

(ii) The set of all vowels of the English alphabet.

Therefore, V = {a, e, i, o, u} → Roster Form

(iii) The set of all odd numbers less than 9.

Therefore, X = {1, 3, 5, 7} → Roster Form

3. Set builder form

In this, a rule, or the formula or the statement is written within the pair of brackets so that the set is well defined. In

the set builder form, all the elements of the set, must possess a single property to become the member of that set.

In this form of representation of a set, the element of the set is described by using a symbol ‘x’ or any other variable

AdvanceDataStructures-Unit-1(Dictionaries)

 Page6of 38

followed by a colon The symbol ‘:‘ or ‘|‘ is used to denote such that and then we write the property possessed by the

elements of the set and enclose the whole description in braces. In this, the colon stands for ‘such that’ and braces

stand for ‘set of all’.

Let P is a set of counting numbers greater than 12;

the set P in set-builder form is written as :

 P = {x : x is a counting number and greater than 12}

 or

 P = {x | x is a counting number and greater than 12}

This will be read as, 'P is the set of elements x such that x is a counting number and is greater than 12'.

AdvanceDataStructures-Unit-1(Dictionaries)

 Page7of 38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page8of 38

Definition A dictionary is an ordered or unordered list of key-element pairs,

where keys are used to locate elements in the list.

Example: consider a data structure that stores bank accounts; it can be viewed as a dictionary, where

account numbers serve as keys for identification of account objects.

AdvanceDataStructures-Unit-1(Dictionaries)

 Page9of 38

Consider an empty unordered dictionary and the following set of operations:
 Operation Dictionary Output

 insertItem(5,A) {(5,A)}

 insertItem(7,B) {(5,A), (7,B)}

 insertItem(2,C) {(5,A), (7,B), (2,C)}

 insertItem(8,D) {(5,A), (7,B), (2,C), (8,D)}

 insertItem(2,E) {(5,A), (7,B), (2,C), (8,D), (2,E)}

 findItem(7) {(5,A), (7,B), (2,C), (8,D), (2,E)} B

 findItem(4) {(5,A), (7,B), (2,C), (8,D), (2,E)} NO_SUCH_KEY

 findItem(2) {(5,A), (7,B), (2,C), (8,D), (2,E)} C

 findAllItems(2) {(5,A), (7,B), (2,C), (8,D), (2,E)} C, E

 size() {(5,A), (7,B), (2,C), (8,D), (2,E)} 5

 removeItem(5) {(7,B), (2,C), (8,D), (2,E)} A

 removeAllItems(2) {(7,B), (8,D)} C, E

 findItem(4) {(7,B), (8,D)} NO_SUCH_KEY

AdvanceDataStructures-Unit-1(Dictionaries)

 Page10of 38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page11of 38

AdvanceDataStructures-Unit-1(Dictionaries)

bphanikrishnawordpress.com Page10of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page11of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page12of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page13of38

Selecting an implementation

AdvanceDataStructures-Unit-1(Dictionaries)

 Page14of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page15of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page16of38

Hash Table is a data structure in which keys are mapped to array positions by a hash function.

 A Hash Table is a data structure for storing key/value pairs

This table can be searched for an item in O(1) time using a hash function to form an address from the key.

Hash Function: Hash function is any well-defined procedure or mathematical function which converts a large, possibly

variable-sized amount of data into a small datum, usually a single integer that may serve as an index into an array

· Hash function is a function which maps key values to array indices. (OR)

· Hash Function is a function which, when applied to the key, produces an integer which can be used as an address in a hash

table.

· We will use h(k) for representing the hashing function

Hash Values: The values returned by a hash function are called hash values or hash codes or hash sums or simply hashes

Hashing is the process of mapping large amount of data item to a smaller table with the help of a hashing function.
• Hash table is an extremely effective and practical way of implementing dictionaries.

• It takes O(1) time for search, insert, and delete operations in the average case. And O(n) time in the worst case.

AdvanceDataStructures-Unit-1(Dictionaries)

 Page17of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page18of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page19of38

 Collisions: If x1 and x2 are two different keys, but the hash values of x1 and x2 are equal (i.e., h(x1) = h(x2))

AdvanceDataStructures-Unit-1(Dictionaries)

 Page20of38

then it is called as a collision.
Ex: Assume a hash function = h(k) = k mod 10
h(19)=19 mod 10=9

h(39)=39 mod 10=9

here h(19)=h(39) this is called collision.

Collision resolution is the most important issue in hash table implementations. To resolve the collisions two techniques are there.

1. Open Hashing 2. Closed Hashing

Perfect Hash Function is a function which, when applied to all the members of the set of items to be stored in a hash table,
produces a unique set of integers within some suitable range. Such function produces no collisions.
Good Hash Function: minimizes collisions by spreading the elements uniformly throughout the array.

AdvanceDataStructures-Unit-1(Dictionaries)

 Page20of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page21of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page22of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page23of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page24of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page25of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page26of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page27of38

AdvanceDataStructures-Unit-1(Dictionaries)

 Page26of38

AdvanceDataStructures-Unit-1(Dictionaries)

Quadratic probing:Insert

bphanikrishnawordpress.com Page27of38

AdvanceDataStructures-Unit-1(Dictionaries)

AdvanceDataStructures-Unit-1(Dictionaries)

 Page28of38

AdvanceDataStructures@Uint-1(Dictionaries)

Page29of38

AdvanceDataStructures@Uint-1(Dictionaries)

 Page30of38

AdvanceDataStructures@Uint-1(Dictionaries)

AdvanceDataStructures@Unit-1(Dictionaries)

Page31of38

AdvanceDataStructures@Unit-1(Dictionaries)

Page33

Division Method
• Idea:

 Map a key k into one of the m slots by taking the remainder of k divided by m

 h(k) = k mod m

• Advantage:

 fast, requires only one operation

• Disadvantage:

 Certain values of m are bad, e.g.,

• power of 2,

• non-prime numbers

Multiplicative method
Idea:

• Multiply key k by a constant A, where 0 < A < 1

• Extract the fractional part of kA

• Multiply the fractional part by m

• Take the floor of the result

 h(k) = = m (k A mod 1)

• Disadvantage: Slower than division method

• Advantage: Value of m is not critical, e.g., typically 2
p

AdvanceDataStructures@Unit-1(Dictionaries)

Page34

Universal Hashing

AdvanceDataStructures@Unit-1(Dictionaries)

Page35

AdvanceDataStructures@Unit-1(Dictionaries)

Page36

AdvanceDataStructures@Unit-1(Dictionaries)

Page37

Runtime of hashing

 the load factor λ is the fraction of the table that is full

 λ = 0 (empty) λ = 0.5 (half full) λ = 1 (full table)

 Linear probing:

 If hash function is fair and λ < 0.5 - 0.6, then hashtable

 operations are all O(1)

 Double hashing:

 If hash function is fair and λ < 0.9 - 0.95, then hashtable

 operations are all O(1)

AdvanceDataStructures@Unit-1(Dictionaries)

Page38

AdvanceDataStructures@Unit-1(Dictionaries)

Page39

AdvanceDataStructures@Unit-1(Dictionaries)

Page40

AdvanceDataStructures@Unit-1(Dictionaries)

Page41

AdvanceDataStructures@Unit-1(Dictionaries)

Page42

AdvanceDataStructures@Unit-1(Dictionaries)

Page43

AdvanceDataStructures@Unit-1(Dictionaries)

Page44

AdvanceDataStructures@Unit-1(Dictionaries)

Page45

AdvanceDataStructures@Unit-1(Dictionaries)

Page46

AdvanceDataStructures@Unit-1(Dictionaries)

Page47

AdvanceDataStructures@Unit-1(Dictionaries)

Page48

AdvanceDataStructures@Unit-1(Dictionaries)

Page49

Rehashing

 Hash Table may get full
 No more insertions possible

 Hash table may get too full
 Insertions, deletions, search take longer time

 Solution: Rehash
 Build another table that is twice as big and has a new hash

function

Move all elements from smaller table to bigger table

 Cost of Rehashing = O(N)
 But happens only when table is close to full

 Close to full = table is X percent full, where X is a tunable
parameter

AdvanceDataStructures@Unit-1(Dictionaries)

Page50

AdvanceDataStructures@Unit-1(Dictionaries)

Page51

Efficiency of Hashing

AdvanceDataStructures@Unit-1(Dictionaries)

Page52

