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UNIT-II 

 

Heap Trees (Priority Queues) – Min and Max Heaps, Operations and Heap Sort . 

Graphs – Terminology, Representations, Basic Search and Traversals, topological sort. 

 

Heaps 

A heap is a tree-based data structure in which all the nodes of the tree are in a specific order. 

For example, if X is the parent node of Y, then the value of X follows a specific order with 

respect to the value of Y and the same order will be followed across the tree. 

The maximum number of children of a node in a heap depends on the type of heap. However, in 

the more commonly-used heap type, there are at most 2 children of a node and it's known as a 

Binary heap. 

In binary heap, if the heap is a complete binary tree with N nodes, then it has smallest possible 

height which is log2N . 

 

In the diagram above, you can observe a particular sequence, i.e each node has greater value than 

any of its children. 

Suppose there are N Jobs in a queue to be done, and each job has its own priority. The job with 

maximum priority will get completed first than others. At each instant, we are completing a job 

with maximum priority and at the same time we are also interested in inserting a new job in the 

queue with its own priority. 

So at each instant we have to check for the job with maximum priority to complete it and also 

insert if there is a new job. This task can be very easily executed using a heap by 

considering N jobs as N nodes of the tree. 

As you can see in the diagram below, we can use an array to store the nodes of the tree. Let’s say 

we have 7 elements with values {6, 4, 5, 3, 2, 0, 1}. 

Note: An array can be used to simulate a tree in the following way. If we are storing one element 

at index i in array Arr, then its parent will be stored at index i/2 (unless its a root, as root has no 

parent) and can be accessed by Arr[i/2], and its left child can be accessed by Arr[2∗i] and its 

right child can be accessed by Arr[2∗i+1]. Index of root will be 1 in an array. 
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There can be two types of heap: 

Max Heap: In this type of heap, the value of parent node will always be greater than or equal to 

the value of child node across the tree and the node with highest value will be the root node of 

the tree. 

Implementation: 

Let’s assume that we have a heap having some elements which are stored in array Arr. The way 

to convert this array into a heap structure is the following. We pick a node in the array, check if 

the left sub-tree and the right sub-tree are max heaps, in themselves and the node itself is a max 

heap (it’s value should be greater than all the child nodes) 

To do this we will implement a function that can maintain the property of max heap (i.e each 

element value should be greater than or equal to any of its child and smaller than or equal to its 

parent) 

void max_heapify (int Arr[ ], int i, int N) 

    { 

        int left = 2*i                   //left child 

        int right = 2*i +1           //right child 

        if(left<= N and Arr[left] > Arr[i] ) 

              largest = left; 
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        else 

             largest = i; 

        if(right <= N and Arr[right] > Arr[largest] ) 

            largest = right; 

        if(largest != i ) 

        { 

            swap (Arr[i] , Arr[largest]); 

            max_heapify (Arr, largest,N); 

        }  

     } 

Complexity: O(logN) 

Example: 
In the diagram below,initially 1st node (root node) is violating property of max-heap as it has 

smaller value than its children, so we are performing max_heapify function on this node having 

value 4. 

 

As 8 is greater than 4, so 8 is swapped with 4 and max_heapify is performed again on 4, but on 

different position. Now in step 2, 6 is greater than 4, so 4 is swapped with 6 and we will get a 

max heap, as now 4 is a leaf node, so further call to max_heapify will not create any effect on 

heap. 

Now as we can see that we can maintain max- heap by using max_heapify function. 

Before moving ahead, lets observe a property which states: A N element heap stored in an array 

has leaves indexed by N/2+1, N/2+2 , N/2+3 …. upto N. 

Let’s observe this with an example: 

Lets take above example of 7 elements having values {8, 7, 6, 3, 2, 4, 5}. 
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So you can see that elements 3, 2, 4, 5 are indexed by N/2+1 (i.e 4), N/2+2 (i.e 5 ) and N/2+3 (i.e 

6) and N/2+4 (i.e 7) respectively. 

Building MAX HEAP: 

Now let’s say we have N elements stored in the array Arr indexed from 1 to N. They are 

currently not following the property of max heap. So we can use max-heapify function to make a 

max heap out of the array. 

How? 

From the above property we observed that elements from Arr[N/2+1] to Arr[N] are leaf nodes, 

and each node is a 1 element heap. We can use max_heapify function in a bottom up manner on 

remaining nodes, so that we can cover each node of tree. 

void build_maxheap (int Arr[ ]) 

    { 

        for(int i = N/2 ; i >= 1 ; i-- ) 

        { 
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            max_heapify (Arr, i) ; 

        } 

    } 

Complexity: O(N). max_heapify function has complexity logN and 

the build_maxheap functions runs only N/2 times, but the amortized complexity for this 

function is actually linear. 

  

Example: 
Suppose you have 7 elements stored in array Arr. 

 

Here N=7, so starting from node having index N/2=3, (also having value 3 in the above 

diagram), we will call max_heapify from index N/2 to 1. 

In the diagram below: 

In step 1, in max_heapify(Arr, 3), as 10 is greater than 3, 3 and 10 are swapped and further call 

to max_heap(Arr, 7) will have no effect as 3 is a leaf node now. 
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In step 2, calling max_heapify(Arr, 2) , (node indexed with 2 has value 4) , 4 is swapped with 8 

and further call to max_heap(Arr, 5) will have no effect, as 4 is a leaf node now. 

In step 3, calling max_heapify(Arr, 1) , (node indexed with 1 has value 1 ), 1 is swapped with 10 

. 

Step 4 is a subpart of step 3, as after swapping 1 with 10, again a recursive call of 

max_heapify(Arr, 3) will be performed , and 1 will be swapped with 9. Now further call to 

max_heapify(Arr, 7) will have no effect, as 1 is a leaf node now. 
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In step 5, we finally get a max- heap and the elements in the array Arr will be : 

 

Min Heap: In this type of heap, the value of parent node will always be less than or equal to the 

value of child node across the tree and the node with lowest value will be the root node of tree. 

 

As you can see in the above diagram, each node has a value smaller than the value of their 

children. 

We can perform same operations as performed in building max_heap. 

First we will make function which can maintain the min heap property, if some element is 

violating it. 

  void min_heapify (int Arr[ ] , int i, int N) 

    { 

    int left  = 2*i; 

    int right = 2*i+1; 

    int smallest; 

    if(left <= N and Arr[left] < Arr[ i ] ) 

         smallest = left; 

    else 

        smallest = i; 

    if(right <= N and Arr[right] < Arr[smallest] ) 

        smallest = right; 

    if(smallest != i) 

    { 

        swap (Arr[ i ], Arr[ smallest ]); 
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        min_heapify (Arr, smallest,N); 

    }  

    } 

Complexity: O(logN) . 

Example: 

Suppose you have elements stored in array Arr {4, 5, 1, 6, 7, 3, 2}. As you can see in the 

diagram below, the element at index 1 is violating the property of min -heap, so performing 

min_heapify(Arr, 1) will maintain the min-heap. 

 

Now let’s use above function in building min-heap. We will run the above function on remaining 

nodes other than leaves as leaf nodes are 1 element heap. 

  void build_minheap (int Arr[ ])  

    { 

        for( int i = N/2 ; i >= 1 ; i--) 

        min_heapify (Arr, i); 

    } 

Complexity: O(N). The complexity calculation is similar to that of building max heap. 

Example: 
Consider elements in array {10, 8, 9, 7, 6, 5, 4} . We will run min_heapify on nodes indexed 

from N/2 to 1. Here node indexed at N/2 has value 9. And at last, we will get a min_heap. 
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Heaps can be considered as partially ordered tree, as you can see in the above examples that the 

nodes of tree do not follow any order with their siblings(nodes on the same level). They can be 

mainly used when we give more priority to smallest or the largest node in the tree as we can 

extract these node very efficiently using heaps. 

APPLICATIONS: 

1) Heap Sort: 



10 
 

We can use heaps in sorting the elements in a specific order in efficient time. 

Let’s say we want to sort elements of array Arr in ascending order. We can use max heap to 

perform this operation. 

Idea: We build the max heap of elements stored in Arr, and the maximum element of Arr will 

always be at the root of the heap. 

Leveraging this idea we can sort an array in the following manner. 

Processing: 

 Initially we will build a max heap of elements in Arr. 

 Now the root element that is Arr[1] contains maximum element of Arr. After that, we 

will exchange this element with the last element of Arr and will again build a max heap 

excluding the last element which is already in its correct position and will decrease the 

length of heap by one. 

 We will repeat the step 2, until we get all the elements in their correct position. 

 We will get a sorted array. 

Implementation: 

Suppose there are N elements stored in array Arr. 

 void heap_sort(int Arr[ ]) 

    { 

        int heap_size = N; 

        build_maxheap(Arr); 

        for(int i = N; i>=2 ; i-- ) 

        { 

            swap(Arr[ 1 ], Arr[ i ]); 

            heap_size = heap_size-1; 

            max_heapify(Arr, 1, heap_size); 

        } 

    } 

Complexity: As we know max_heapify has complexity O(logN), build_maxheap has 

complexity O(N) and we run max_heapify N−1 times in heap_sort function, therefore 

complexity of heap_sort function is O(NlogN). 

Example: 
In the diagram below,initially there is an unsorted array Arr having 6 elements. We begin by 

building max-heap. 
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After building max-heap, the elements in the array Arr will be: 
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Processing: 

Step 1: 8 is swapped with 5. 

Step 2: 8 is disconnected from heap as 8 is in correct position now. 

Step 3: Max-heap is created and 7 is swapped with 3. 

Step 4: 7 is disconnected from heap. 

Step 5: Max heap is created and 5 is swapped with 1. 

Step 6: 5 is disconnected from heap. 

Step 7: Max heap is created and 4 is swapped with 3. 

Step 8: 4 is disconnected from heap. 

Step 9: Max heap is created and 3 is swapped with 1. 

Step 10: 3 is disconnected. 
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After all the steps, we will get a sorted array. 

 

2) Priority Queue: 

Priority Queue is similar to queue where we insert an element from the back and remove an 

element from front, but with a difference that the logical order of elements in the priority queue 

depends on the priority of the elements. The element with highest priority will be moved to the 

front of the queue and one with lowest priority will move to the back of the queue. Thus it is 

possible that when you enqueue an element at the back in the queue, it can move to front because 

of its highest priority. 

Example: 
Let’s say we have an array of 5 elements : {4, 8, 1, 7, 3} and we have to insert all the elements in 

the max-priority queue. 

First as the priority queue is empty, so 4 will be inserted initially. 

Now when 8 will be inserted it will moved to front as 8 is greater than 4. 

While inserting 1, as it is the current minimum element in the priority queue, it will remain in the 

back of priority queue. 

Now 7 will be inserted between 8 and 4 as 7 is smaller than 8. 

Now 3 will be inserted before 1 as it is the 2nd minimum element in the priority queue. All the 

steps are represented in the diagram below: 
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We can think of many ways to implement the priority queue. 

Naive Approach: 

Suppose we have N elements and we have to insert these elements in the priority queue. We can 

use list and can insert elements in O(N) time and can sort them to maintain a priority queue 

in O(NlogN) time. 

Efficient Approach: 

We can use heaps to implement the priority queue. It will take O(logN) time to insert and delete 

each element in the priority queue. 

Based on heap structure, priority queue also has two types max- priority queue and min - priority 

queue. 

Let’s focus on Max Priority Queue. 

Max Priority Queue is based on the structure of max heap and can perform following operations: 

maximum(Arr) : It returns maximum element from the Arr. 

extract_maximum (Arr) - It removes and return the maximum element from the Arr. 

increase_val (Arr, i , val) - It increases the key of element stored at index i in Arr to new 

value val. 

insert_val (Arr, val ) - It inserts the element with value val in Arr. 

Implementation: 
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length = number of elements in Arr. 

Maximum : 

   int maximum(int Arr[ ]) 

        { 

            return Arr[ 1 ];  //as the maximum element is the root element in the max heap. 

        }  

Complexity: O(1) 

Extract Maximum: In this operation, the maximum element will be returned and the last 

element of heap will be placed at index 1 and max_heapify will be performed on node 1 as 

placing last element on index 1 will violate the property of max-heap. 

    int extract_maximum (int Arr[ ]) 

    { 

        if(length == 0) 

        { 

    cout<< “Can’t remove element as queue is empty”; 

            return -1; 

        } 

        int max = Arr[1]; 

        Arr[1] = Arr[length]; 

        length = length -1; 

        max_heapify(Arr, 1); 

        return max; 

    } 

Complexity: O(logN). 

Increase Value: In case increasing value of any node, it may violate the property of max-heap, 

so we may have to swap the parent’s value with the node’s value until we get a larger value on 

parent node. 

   void increase_value (int Arr[ ], int i, int val) 

    { 

        if(val < Arr[ i ]) 

        { 

            cout<<”New value is less than current value, can’t be inserted” <<endl; 

            return; 

        } 

        Arr[ i ] = val; 

        while( i > 1 and Arr[ i/2 ] < Arr[ i ]) 

        { 

            swap(Arr[ i/2 ], Arr[ i ]); 

            i = i/2; 

        } 

    } 

Complexity : O(logN). 
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Insert Value : 

 void insert_value (int Arr[ ], int val) 

    { 

        length = length + 1; 

        Arr[ length ] = -1;  //assuming all the numbers greater than 0 are to be inserted in queue. 

        increase_val (Arr, length, val); 

    } 

Complexity: O(logN). 

Example: 

Initially there are 5 elements in priority queue. 

Operation: Insert Value(Arr, 6) 

In the diagram below, inserting another element having value 6 is violating the property of max-

priority queue, so it is swapped with its parent having value 4, thus maintaining the max priority 

queue. 

 

Operation: Extract Maximum: 

In the diagram below, after removing 8 and placing 4 at node 1, violates the property of max-

priority queue. So max_heapify(Arr, 1) will be performed which will maintain the property of 

max - priority queue. 
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As discussed above, like heaps we can use priority queues in scheduling of jobs. When there 

are N jobs in queue, each having its own priority. If the job with maximum priority will be 

completed first and will be removed from the queue, we can use priority queue’s operation 

extract_maximum here. If at every instant we have to add a new job in the queue, we can 

use insert_value operation as it will insert the element in O(logN) and will also maintain the 

property of max heap. 

 



19  

Introduction to Graphs 
 

Graph is a non linear data structure; A map is a well-known example of a graph. In a map various connections 

are made between the cities. The cities are connected via roads, railway lines and aerial network. We can 

assume that the graph is the interconnection of cities by roads. Euler used graph theory to solve Seven Bridges 

of Königsberg problem. Is there a possible way to traverse every bridge exactly once – Euler Tour 
 

 

Figure: Section of the river Pregal in Koenigsberg and Euler's graph. 
 

Defining the degree of a vertex to be the number of edges incident to it, Euler showed that there is a walk 

starting at any vertex, going through each edge exactly once and terminating at the start vertex iff the degree 

of each, vertex is even. A walk which does this is called Eulerian. There is no Eulerian walk for the 

Koenigsberg bridge problem as all four vertices are of odd degree. 

A graph contains a set of points known as nodes (or vertices) and set of links known as edges (or Arcs) 

which connects the vertices. 

A graph is defined as Graph is a collection of vertices and arcs which connects vertices in the graph. A graph 

G is represented as G = ( V , E ), where V is set of vertices and E is set of edges. 

Example: graph G can be defined as G = ( V , E ) Where V = {A,B,C,D,E} and 
 

E = {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}. This is a graph with 5 vertices and 6 edges. 

 

 
Graph Terminology 

 

1. Vertex : An individual data element of a graph is called as Vertex. Vertex is also known as node. In 

above example graph, A, B, C, D & E are known as vertices. 

2. Edge : An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is 

represented as (starting Vertex, ending Vertex). 

In above graph, the link between vertices A and B is represented as 

(A,B). Edges are three types: 

1. Undirected Edge - An undirected edge is a bidirectional edge. If there is an undirected edge between 

vertices A and B then edge (A , B) is equal to edge (B , A). 

2. Directed Edge - A directed edge is a unidirectional edge. If there is a directed edge between vertices A 
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and B then edge (A , B) is not equal to edge (B , A). 

 

3. Weighted Edge - A weighted edge is an edge with cost on it. 
 

Types of Graphs 

1.Undirected 

Graph 

A graph with only undirected edges is said to be undirected graph. 
 

 

2. Directed Graph 
 

A graph with only directed edges is said to be directed graph. 
 

 
3. Complete Graph 

 

A graph in which any V node is adjacent to all other nodes present in the graph is known as a complete graph. 

An undirected graph contains the edges that are equal to edges = n(n-1)/2 where n is the number of vertices 

present in the graph. The following figure shows a complete graph. 
 

 

4. Regular Graph 
 

Regular graph is the graph in which nodes are adjacent to each other, i.e., each node is accessible from any 

other node. 
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5. Cycle Graph 

 

A graph having cycle is called cycle graph. In this case the first and last nodes are the same. A closed simple 

path is a cycle. 

 

 
 

 
 

6. Acyclic Graph 
 

A graph without cycle is called acyclic graphs. 

 
7. Weighted Graph 

 

A graph is said to be weighted if there are some non negative value assigned to each edges of the graph. 

The value is equal to the length between two vertices. Weighted graph is also called a network. 
 

 
Outgoing Edge 

 

A directed edge is said to be outgoing edge on its orign vertex. 
 

Incoming Edge 
 

A directed edge is said to be incoming edge on its destination vertex. 
 

Degree 
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Total number of edges connected to a vertex is said to be degree of that vertex. 
 

Indegree 
 

Total number of incoming edges connected to a vertex is said to be indegree of that vertex. 
 

Outdegree 
 

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex. 
 

Parallel edges or Multiple edges 
 

If there are two undirected edges to have the same end vertices, and for two directed edges to have the 

same origin and the same destination. Such edges are called parallel edges or multiple edges. 

Self-loop 
 

An edge (undirected or directed) is a self-loop if its two endpoints coincide. 
 

Simple Graph 
 

A graph is said to be simple if there are no parallel and self-loop edges. 

 

  Adjacent nodes 
 

When there is an edge from one node to another then these nodes are called adjacent nodes. 

Incidence 
 

In an undirected graph the edge between v1 and v2 is incident on node v1 and v2. 

Walk 
 

A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending with vertices, 

such that each edge is incident with the vertices preceding and following it. 

Closed walk 
 

A walk which is to begin and end at the same vertex is called close walk. Otherwise it is an open walk. 

 
 

If e1,e2,e3,and e4 be the edges of pair of vertices (v1,v2),(v2,v4),(v4,v3) and (v3,v1) respectively ,then v1 

e1 v2 e2 v4 e3 v3 e4 v1 be its closed walk or circuit. 

Path:A open walk in which no vertex appears more than once is called a path. 
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If e1 and e2 be the two edges between the pair of vertices (v1,v3) and (v1,v2) respectively, then v3 e1 v1 e2 

v2 be its path. 

Length of a path 
 

The number of edges in a path is called the length of that path. In the following, the length of the path is 3. 
 
 

 
An open walk Graph 

 

Circuit 
 

A closed walk in which no vertex (except the initial and the final vertex) appears more than once is 

called a circuit. 

A circuit having three vertices and three edges. 
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Sub Graph 
 

A graph S is said to be a sub graph of a graph G if all the vertices and all the edges of S are in G, and each 

edge of S has the same end vertices in S as in G. A subgraph of G is a graph G’ such that V(G’)  V(G) and 

E(G’)  E(G) 

 

 

 

 

 

 

 
Connected Graph 

 

A graph G is said to be connected if there is at least one path between every pair of vertices in G. 

Otherwise,G is disconnected. 

 

A connected graph G A disconnected graph G 
 

This graph is disconnected because the vertex v1 is not connected with the other vertices of the graph. 
 

Degree 
 

In an undirected graph, the number of edges connected to a node is called the degree of that node or the 

degree of a node is the number of edges incident on it. 

In the above graph, degree of vertex v1 is 1, degree of vertex v2 is 3, degree of v3 and v4 is 2 in a 

connected graph. 

Indegree:The indegree of a node is the number of edges connecting to that node or in other words edges 

incident to it. 
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In the above graph,the indegree of vertices v1, v3 is 2, indegree of vertices v2, v5 is 1 and indegree of v4 is zero. 

 

Outdegree 
 

The outdegree of a node (or vertex) is the number of edges going outside from that node or in other words the 
 

ADT of Graph: 
 

Structure Graph is 
 

objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of 

vertices functions: for all graph  Graph, v, v1 and v2  Vertices 

Graph Create()::=return an empty graph 
 

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no edge. 
 

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between v1 and v2 
 

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed 
 

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is 

removed Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else 

return FALSE List Adjacent(graph,v)::= return a list of all vertices that are adjacent 

to v 

Graph Representations 
 

Graph data structure is represented using following representations 
 

1. Adjacency Matrix 
 

2. Adjacency List 
 

3. Adjacency 

Multilists 1.Adjacency 

Matrix 

In this representation, graph can be represented using a matrix of size total number of vertices by total 

number of vertices; means if a graph with 4 vertices can be represented using a matrix of 4X4 size. 
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In this matrix, rows and columns both represent vertices. 
 

This matrix is filled with either 1 or 0. Here, 1 represents there is an edge from row vertex to column vertex 

and 0 represents there is no edge from row vertex to column vertex. 

Adjacency Matrix : let G = (V, E) with n vertices, n  1. The adjacency matrix of G is a 2-dimensional n 

 n matrix, A, A(i, j) = 1 iff (vi, vj) E(G) (vi, vj for a diagraph), A(i, j) = 0 otherwise. 

example : for undirected graph 

 

 
For a Directed graph 
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 

 
 

The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need 

not be symmetric. 

Merits of Adjacency Matrix: 
 

From the adjacency matrix, to determine the connection of vertices is easy 
n1 

The degree of a vertex is  adj _ mat[i][ j] 
j 0 

For a digraph, the row sum is the out_degree, while the column sum is the in_degree 

n1 

ind (vi)  A[ j, i] 
j 0 

n1 

outd(vi)  A[i, j] 
j 0 

The space needed to represent a graph using adjacency matrix is n2 bits. To identify the edges in a 

graph, adjacency matrices will require at least O(n2) time. 

2. Adjacency List 
 

In this representation, every vertex of graph contains list of its adjacent vertices. The n rows of the 

adjacency matrix are represented as n chains. The nodes in chain I represent the vertices that are adjacent 

to vertex i. 

It can be represented in two forms. In one form, array is used to store n vertices and chain is used to 

store its adjacencies. Example: 

So that we can access the adjacency list for any vertex in O(1) time. Adjlist[i] is a pointer to to first node in 

the adjacency list for vertex i. Structure is 

#define MAX_VERTICES 50 

typedef struct node 

*node_pointer; typedef struct 

node { 

int vertex; 

struct node *link; 

}; 

node_pointer 
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graph[MAX_VERTICES]; int n=0; 

/* vertices currently in use */ 

 
Another type of representation is given below. 

 

example: consider the following directed graph representation implemented using linked list 
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This representation can also be implemented using array 
 

 

 

Sequential representation of adjacency list is 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

9 11 13 15 17 18 20 22 23 2 1 3 0 0 3 1 2 5 6 4 5 7 6 

 

 

 

 

 

Graph 
 

Instead of chains, we can use sequential representation into an integer array with size n+2e+1. For 0<=i<n, 

Array[i] gives starting point of the list for vertex I, and array[n] is set to n+2e+1. The adjacent vertices of node 

I are stored sequentially from array[i]. 

For an undirected graph with n vertices and e edges, linked adjacency list requires an array of size n and 2e 

chain nodes. For a directed graph, the number of list nodes is only e. the out degree of any vertex may be 

determined by counting the number of nodes in its adjacency list. To find in-degree of vertex v, we have to 

traverse complete list. 

To avoid this, inverse adjacency list is used which contain in-degree. 
 

 

 
 

3.Adjacency Multilists 
 

In the adjacency-list representation of an undirected graph each edge (u, v) is represented by two entries one 

on the list for u and the other on tht list for v. As we shall see in some situations it is necessary to be able to 

determin ie ~ nd enty for a particular edge and mark that edg as having been examined. This can be 

accomplished easily if the adjacency lists are actually maintained as multilists (i.e., lists in which nodes may be 
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shared among several lists). For each edge there will be exactly one node but this node will be in two lists (i.e. 

the adjacency lists for each of the two nodes to which it is incident). 

For adjacency multilists, node 

structure is typedef struct edge 

*edge_pointer; typedef struct edge { 

short int 

marked; int 

vertex1, 

vertex2; 

edge_pointer path1, path2; 

}; 

edge_pointer graph[MAX_VERTICES]; 
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Lists: vertex 0: N0->N1->N2, vertex 1: N0->N3-

>N4 vertex 2: N1->N3->N5, vertex 3: N2-

>N4->N5 

Figure: Adjacency multilists for given graph 

 
 

4. Weighted edges 
 

In many applications the edges of a graph have weights assigned to them. These weights may represent the 

distance from one vertex to another or the cost of going from one; vertex to an adjacent vertex In these 

applications the adjacency matrix entries A [i][j] would keep this information too. When adjacency lists are 

used the weight information may be kept in the list’nodes by including an additional field weight. A graph 

with weighted edges is called a network. 

 

 

 
ELEMENTARY GRAPH OPERATIONS 

 

Given a graph G = (V E) and a vertex v in V(G) we wish to visit all vertices in G that are reachable from v 

(i.e., all vertices that are connected to v). We shall look at two ways of doing this: depth-first search and 

breadth-first search. Although these methods work on both directed and undirected graphs the following 

discussion assumes that the graphs are undirected. 

Depth-First Search 
 

 Begin the search by visiting the start vertex v 

o If v has an unvisited neighbor, traverse it recursively 
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o Otherwise, backtrack 

 Time complexity 

o Adjacency list: O(|E|) 

o Adjacency matrix: O(|V|2) 

 
We begin by visiting the start vertex v. Next an unvisited vertex w adjacent to v is selected, and a depth-first 

search from w is initiated. When a vertex u is reached such that all its adjacent vertices have been visited, we 

back up to the last vertex visited that has an unvisited vertex w adjacent to it and initiate a depth-first search 

from w. 

The search terminates when no unvisited vertex can be reached from any of the visited vertices. 
 

DFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph without any 

loops. We use Stack data structure with maximum size of total number of vertices in the graph to 

implement DFS traversal of a graph. 

 
We use the following steps to implement DFS traversal... 

 

Step 1: Define a Stack of size total number of vertices in the graph. 
 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack. 
 

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which is not visited and 

push it on to the stack. 

Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the stack. 
 

Step 5: When there is no new vertex to be visit then use back tracking and pop one vertex from the 

stack. Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty. 

Step 7: When stack becomes Empty, then produce final spanning tree by removing unused edges from the 

graph This function is best described recursively as in Program. 

#define FALSE 0 

#define TRUE 1 

int 

visited[MAX_VERTICES]; 

void dfs(int v) 

{ 

node_pointer 

w; visited[v]= 

TRUE; 

printf(“%d”, 

v); 

for (w=graph[v]; w; w=w-

>link) if (!visited[w-

>vertex]) 

dfs(w->vertex); 

} 

Consider the graph G of Figure 6.16(a), which is represented by its adjacency lists as in Figure 6.16(b). If a 
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depth- first search is initiated from vertex 0 then the vertices of G are visited in the following order: 0 1 3 7 4 

5 2 6. Since DFS(O) visits all vertices that can be reached from 0 the vertices visited, together with all 

edges in G incident to these vertices form a connected component of G. 
 

 
Figure: Graph and its adjacency list representation, DFS spanning tree 

 

Analysis or DFS: 

When G is represented by its adjacency lists, the vertices w adjacent to v can be determined by following a 

chain of links. Since DFS examines each node in the adjacency lists at most once and there are 2e list nodes 

the time to complete the search is O(e). If G is represented by its adjacency matrix then the time to 

determine all vertices adjacent to v is O(n). Since at most n vertices are visited the total time is O(n2). 

Breadth-First Search 

In a breadth-first search, we begin by visiting the start vertex v. Next all unvisited vertices adjacent to v are 

visited. Unvisited vertices adjacent to these newly visited vertices are then visited and so on. Algorithm BFS 

(Program 6.2) gives the details. 

typedef struct queue 

*queue_pointer; typedef struct 

queue { 

int vertex; 

queue_pointer link; 

}; 

void 

addq(queue_pointe

r *, queue_pointer 

*, int); 

int deleteq(queue_pointer 

*); void bfs(int v) 

{ 

node_pointer w; 

queue_pointer front, 

rear; front = rear = 

NULL; printf(“%d”, 

v); visited[v] = 

TRUE; addq(&front, 

&rear, v); 

while (front) { 

v= deleteq(&front); 

for (w=graph[v]; w; w=w-

>link) if (!visited[w-
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>vertex]) { printf(“%d”, w-

>vertex); 

addq(&front, &rear, w-

>vertex); visited[w->vertex] 

= TRUE; 

} 

} 

} 

Steps: 

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph without any loops. 

We use Queue data structure with maximum size of total number of vertices in the graph to implement BFS 

traversal of a graph. 

 
We use the following steps to implement BFS traversal... 

Step 1: Define a Queue of size total number of vertices in the graph. 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue. 

Step 3: Visit all the adjacent vertices of the vertex which is at front of the Queue which is not visited and 

insert them into the Queue. 

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then delete that vertex 

from the Queue. 

Step 5: Repeat step 3 and 4 until queue becomes empty. 

Step 6: When queue becomes Empty, then produce final spanning tree by removing unused edges from the graph 

Analysis Of BFS: 

Each visited vertex enters the queue exactly once. So the while loop is iterated at most n times If an adjacency 

matrix is used the loop takes O(n) time for each vertex visited. The total time is therefore, O(n2). If adjacency 

lists are used the loop has a total cost of d0 + … + dn-1 = O(e), where d is the degree of vertex i. As in the case 

of DFS all visited vertices together with all edges incident to them, form a connected component of G. 

3.Connected Components 

If G is an undirected graph, then one can determine whether or not it is connected by simply making a call 

to either DFS or BFS and then determining if there is any unvisited vertex. The connected components of a 

graph may be obtained by making repeated calls to either DFS(v) or BFS(v); where v is a vertex that has not 

yet been visited. This leads to function Connected(Program 6.3), which determines the connected 

components of G. The algorithm uses DFS (BFS may be used instead if desired). The computing time is not 

affected. Function connected –Output outputs all vertices visited in the most recent invocation of DFS 

together with all edges incident on these vertices. 

void 

connected(void)

{ for (i=0; i<n; 

i++) { 

if 

(!visited[

i]) { 

dfs(i); 

printf(“\n”); } } } 

Analysis of Components: 

If G is represented by its adjacency lists, then the total time taken by dfs is O(e). Since the for loops take 

O(n) time, the total time to generate all the Connected components is O(n+e). If adjacency matrices are 

used,then the time required is O(n2) 
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Topological Sort | Topological Sort Examples 

 

Topological Sort is a linear ordering of the vertices in such a way that if there is an edge in the DAG going from vertex ‘u’ to vertex 

‘v’,then ‘u’ comes before ‘v’ in the ordering. 

 

It is important to note that- 

 

 Topological Sorting is possible if and only if the graph is a Directed Acyclic Graph. 

 There may exist multiple different topological orderings for a given directed acyclic graph. 
 

 

Consider the following directed acyclic graph- 

  
 
For this graph, following 4 different topological orderings are possible- 

 

1 2 3 4 5 6 
1 2 3 4 6 5 

1 3 2 4 5 6 

1 3 2 4 6 5 

 

Applications of Topological Sort- 

  

Few important applications of topological sort are- 

 

o Scheduling jobs from the given dependencies among jobs 

o Instruction Scheduling 

o Determining the order of compilation tasks to perform in make files 

o Data Serialization 
Find the number of different topological orderings possible for the given graph- 

 

 
 

Step-01: Write in-degree of each vertex- 
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    Step-02:Vertex-A has the least in-degree. 

So, remove vertex-A and its associated edges. Now, update the in-degree of other vertices. 

 
Step-03: 

     Vertex-B has the least in-degree. So, remove vertex-B and its associated edges. Now, update the in-degree of other vertices. 

 
Step-04: 

 

There are two vertices with the least in-degree. So, following 2 cases are possible- 

In case-01, 

Remove vertex-C and its associated edges  Then, update the in-degree of other vertices. 

In case-02, 

Remove vertex-D and its associated edges. Then, update the in-degree of other vertices. 

 

 
 



22  

Step-05: 

Now, the above two cases are continued separately in the similar manner. 

     In case-01, 
     Remove vertex-D since it has the least in-degree. Then, remove the remaining vertex-E. 

In case-02, 

Remove vertex-C since it has the least in-degree. Then, remove the remaining vertex-E. 

 

 
Conclusion- 

 For the given graph, following 2 different topological orderings are possible- 

 

A B C D E      or    A B D C E 

 

 

 

 

 

 

 

Problem-02: Find the number of different topological orderings possible for the given graph- 

 

 
  

Solution- 

 The topological orderings of the above graph are found in the following steps- 

      Step-01: 

Write in-degree of each vertex- 
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Step-02: 

 Vertex-1 has the least in-degree.So, remove vertex-1 and its associated edges. Now, update the in-degree of other vertices. 

 
  

  Step-03: There are two vertices with the least in-degree. So, following 2 cases are possible- 

  In case-01, Remove vertex-2 and its associated edges. Then, update the in-degree of other vertices. 

  In case-02,Remove vertex-3 and its associated edges. Then, update the in-degree of other vertices. 
 

   
 

Step-04: 

 Now, the above two cases are continued separately in the similar manner. 
In case-01,Remove vertex-3 since it has the least in-degree.Then, update the in-degree of other vertices. 

In case-02, Remove vertex-2 since it has the least in-degree.Then, update the in-degree of other vertices. 

  



24  

 
 

  Step-05: 
In case-01, Remove vertex-4 since it has the least in-degree.Then, update the in-degree of other vertices. 

In case-02, Remove vertex-4 since it has the least in-degree. Then, update the in-degree of other vertices. 

  

 
Step-06: 

 In case-01,There are 2 vertices with the least in-degree.So, 2 cases are possible. 

Any of the two vertices may be taken first. 

 Same is with case-02. 
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 Conclusion- 

  

 

For the given graph, following 4 different topological orderings are possible- 

 

1 2 3 4 5 6 

1 2 3 4 6 5 

1 3 2 4 5 6 

1 3 2 4 6  

Problem-03: 

 Consider the directed graph given below. Which of the following statements is true? 

 

  

 
 

     1.The graph does not have any topological ordering. 

2.Both PQRS and SRPQ are topological orderings. 

3.Both PSRQ and SPRQ are topological orderings. 

4.PSRQ is the only topological ordering. 

Solution- 

The given graph is a directed acyclic graph. So, topological orderings exist. P and S must appear before R and Q in topological 

orderings as per the definition of topological sort. 

Thus, Correct option is (C). 

 

 Problem-04: 

 Consider the following directed graph- 

 
  

The number of different topological orderings of the vertices of the graph is ________ ? 

Solution- 

  

 

Number of different topological orderings possible = 6. 

 

Thus, Correct answer is 6. 
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