
Poelman & Associates, Inc. (c) 2003 1

Swing

A Quick Tutorial on Programming
Swing Applications

Poelman & Associates, Inc. (c) 2003 2

MVC – Model View Controller
• Swing is based on this design pattern
• It means separating the implementation of

an application into layers or components:
– The Model - the data structure that

represents something (like a customer info
rec)

– The Controller - the user interface logic for
manipulating it

– The View - the display of that data structure to
the user.

Poelman & Associates, Inc. (c) 2003 3

What is Swing?

• A set of classes (part of JFC) that support
platform independent GUI (Graphical User
Interface)

• Successor to the original Java GUI
classes (AWT) which didn’t work very well
(they had platform dependencies that
really made it a difficult API to use)

• AWT wasn’t very “sexy”

Poelman & Associates, Inc. (c) 2003 4

Swing

• Visible “widgets” - windows, buttons,
combo boxes, trees, tables, checkboxes,
text fields, menus, …

• Containers of components – applets,
dialogs, windows and frames

• Supporting classes and utility methods

Poelman & Associates, Inc. (c) 2003 5

Some important Swing visible
component classes

• JApplet **
• JButton
• JCheckBox
• JColorChooser
• JComboBox
• JDialog **
• JFileChooser
• JFormattedTextField
• JFrame **
• JLabel
• JList
• JMenu
• JMenuBar
• JMenuItem
• JPanel

• JPasswordField
• JPopupMenu
• JProgressBar
• JRadioButton
• JScrollBar
• JSlider
• JSpinner
• JTable
• JTextArea
• JTextField
• JToggleButton
• JToolBar
• JTree
• JWindow **

• ** means a top level containers

Poelman & Associates, Inc. (c) 2003 6

Using netbeans to create a
JDialog

Poelman & Associates, Inc. (c) 2003 7

adding fields

Poelman & Associates, Inc. (c) 2003 8

Poelman & Associates, Inc. (c) 2003 9

my empty
CustomerInfoDialog:JDialog

Poelman & Associates, Inc. (c) 2003 10

code created

Poelman & Associates, Inc. (c) 2003 11

To kill a zombie or running process in
netbeans right click and choose: ”terminate”

Poelman & Associates, Inc. (c) 2003 12

executing the class displays:

Poelman & Associates, Inc. (c) 2003 13

Editing a dialog

• 1St select a layout manager for the dialog

Poelman & Associates, Inc. (c) 2003 14

select component

edit properties

Poelman & Associates, Inc. (c) 2003 15

changing the layout manager

Poelman & Associates, Inc. (c) 2003 16

what layout manager should I
use?

• Start with the absolute and then
experiment when you feel comfortable (or
hire a graphic artist and let them worry
about it ;-).

Poelman & Associates, Inc. (c) 2003 17

Adding other components to the
view - JTextFields

Poelman & Associates, Inc. (c) 2003 18

execute the class

Poelman & Associates, Inc. (c) 2003 19

Adding a combo box

Poelman & Associates, Inc. (c) 2003 20

edit the model property for the
combo box

type in state
abbreviations

separated
by commas

Poelman & Associates, Inc. (c) 2003 21

Poelman & Associates, Inc. (c) 2003 22

preferred size property

hor , vert

Poelman & Associates, Inc. (c) 2003 23

MVC

Model – View – Controller Design
Pattern

Poelman & Associates, Inc. (c) 2003 24

Design Patterns
• A design pattern is a way of designing code that benefits from experience of

other developers – see GoF (Gang of Four) on Patterns
• Design patterns are “rules of thumb” & best practices
• A GUI is based on many design patterns

– 3D Pliancy
– Feedback
– Icons
– Menus
– Pointing
– Mnemonics & Accelerators
– Many more …

• A pattern usually has a name (and several aliases), a context, a problem it
addresses, a description of the solution, hints of when to use it and when
not to.

• See http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns/ ,
http://choices.cs.uiuc.edu/sane/dpatterns.html#dp and
http://www.stanford.edu/~borchers/hcipatterns

Poelman & Associates, Inc. (c) 2003 25

MVC – Model View Controller
pattern

• Swing components are designed as MVC
components
– Model = data or object that is the to be

visually represented
– View = one or more visual representations of

that data/object
– Controller = code to manage input to the

model

Poelman & Associates, Inc. (c) 2003 26

MVC

• © Sun 2002

Poelman & Associates, Inc. (c) 2003 27

MVC in Swing Components

• The Swing component class is the view
and controller

• A separate class is the model
• Most components come with a default

model
• You can set the model to your own model

for a control
• Several controls could share a model!

Poelman & Associates, Inc. (c) 2003 28

Poelman & Associates, Inc. (c) 2003 29

Creating icons using the blank icon
to start with

Poelman & Associates, Inc. (c) 2003 30

Change the properties of the button
to use you icon

Poelman & Associates, Inc. (c) 2003 31

Pushing the buttons changes the
displayed prices.

Poelman & Associates, Inc. (c) 2003 32

A different and better layout

Poelman & Associates, Inc. (c) 2003 33

JTree

JFrame

JFileChooser

JTable

JPasswordField

JSlider

JButton

JProgressBar

Poelman & Associates, Inc. (c) 2003 34

private javax.swing.JPasswordField jPasswordField1;

private javax.swing.JTree jTree1;

private javax.swing.JSlider jSlider1;

private javax.swing.JProgressBar jProgressBar1;

private javax.swing.JTable jTable1;

private javax.swing.JButton jButton2;

private javax.swing.JButton jButton1;

private javax.swing.JFileChooser jFileChooser1;

private javax.swing.JLabel jLabel1;

Poelman & Associates, Inc. (c) 2003 35

Swing based MenuLookDemo

Poelman & Associates, Inc. (c) 2003 36

TopLevelWindows.java

Poelman & Associates, Inc. (c) 2003 37

TopLevelWindows.java
package SwingSamples;
import javax.swing.*;
public class TopLevelWindows
{

public static void main(String args[])
{

JFrame myJFrame = new JFrame("The JFrame");
myJFrame.setSize(300,300);
myJFrame.setLocation(100,100);

JWindow myJWindow = new JWindow();
myJWindow.setSize(300,300);
myJWindow.setLocation(500, 100);

myJFrame.setVisible(true);
myJWindow.setVisible(true);

}
}

Poelman & Associates, Inc. (c) 2003 38

Top Level Containers

• Must have a top level container in Swing
• You must add components to the

associated content pane

Poelman & Associates, Inc. (c) 2003 39

ContentPaneExample.java

package SwingSamples;

import java.awt.*;
import javax.swing.*;

public class ContentPaneExample
{

public static void main(String args[])
{

JFrame myJFrame = new JFrame("JFrame");
myJFrame.setLocation(100,100);

Container myContentPane = myJFrame.getContentPane();
myContentPane.setLayout(new FlowLayout());
myContentPane.add(new JLabel("One"));
myContentPane.add(new JLabel("Two"));

myJFrame.pack(); //reformats the layout to the minimum size to fit
everything

myJFrame.setVisible(true);
}

}

Without the pack()

With the pack()

Poelman & Associates, Inc. (c) 2003 40

ContentPaneExample2.java

package SwingSamples;

import java.awt.*;
import javax.swing.*;

public class ContentPaneExample2
{

public static void main(String args[])
{

JFrame myJFrame = new JFrame("JFrame");
myJFrame.setLocation(100,100);

Container myContentPane = new JPanel();

myContentPane.add(new JLabel("One"));
myContentPane.add(new JLabel("Two"));

myJFrame.setContentPane(myContentPane);
myJFrame.pack();
myJFrame.setVisible(true);

}

}

Poelman & Associates, Inc. (c) 2003 41

Events
• Swing uses them to communicate

between swing components.
• An event is just a method call on the

receiving object by the sending object. The
method passes the event object.
addActionListener(ActionListener listener);
removeActionListener(ActionListener listener);

• An object registers to receive events. The
method that gets called is:
actionPerformed(ActionEvent e);

Poelman & Associates, Inc. (c) 2003 42

Events
• In Swing they are multicast – 1 to many

possible. Manes multiple method calls by
the send basically.

• Order isn’t defined, though.
• Events are immutable to the receiver.
• Events may be queued as in the keyboard

event queue.
• Multiple events maybe compressed into

one as in mouse movements.

Poelman & Associates, Inc. (c) 2003 43

Event Modifier Flags
• SHIFT_MASK

• CTRL_MASK

• META_MASK

• ALT_MASK

• BUTTON1_MASK

• BUTTON2_MASK

• BUTTON3_MASK

• Detect when certain keys are also pressed.
int modifierFlags = myEvent.getModifiers();
if ((modifierFlags & InputEvent.CRTL_MASK)!=0)

System.println.out(“Pressing the contrl key”);

Poelman & Associates, Inc. (c) 2003 44

Event Types
• ComponentEvent //resized,moved, shown, hidden

• FocusEvent //gained, lost

• KeyEvent //typed, pressed, released

• MouseEvent //clicked, pressed, released,
//entered, exited

• ContainerEvent //componentAdded componentRemoved

• ActionEvent //fired by: JButton, JChekBox, …

• AdjustmentEvent //fired by: JScrollBar

• Many more ….

Poelman & Associates, Inc. (c) 2003 45

Event Adapter Classes
• Map incoming events to a method to invoke on the

model to achieve the function.
• Separates the View & Controller from the Model (MVC)
• Prebuilt adapter has stubbed out methods for events.

You only implement the ones you are interested. You do
this by extending the adapter and overiding the methods
you need.

• Follows a general design pattern of called “adapter”.
• MouseAdapter, MouseInputAdapter,

MouseMotionAdapter, KeyAdapter, ComponentAdapter,
ContainerAdapter, DragSourceAdapter,
DropTargetAdapter, FocusAdapter, WindowAdapter, …

Poelman & Associates, Inc. (c) 2003 46

AWT Robot!

• Used to simulate keyboard and mouse
programmatically.

• It places events in the native system
queues for the platform you are on (not
just the java queue).

• Used for recording and replaying activities
in regression testing and other uses.

Poelman & Associates, Inc. (c) 2003 47

Multithreading and Swing
• Swing components always execute on a

single thread within your application. Not
the main thread of your application, either.

• Swing components are NOT multithread
safe!

• This is done for speed but influences how
you must design for them.

• We can ignore this for protoyping UIs but
not for design of applications.

Poelman & Associates, Inc. (c) 2003 48

Swing Components

Poelman & Associates, Inc. (c) 2003 49

Sample dialog with a few controls.
MySampleOfSwingControls1.java

Poelman & Associates, Inc. (c) 2003 50

JButton

java.lang.Object

|

+--java.awt.Component

|

+--java.awt.Container

|

+--javax.swing.JComponent

|

+--javax.swing.AbstractButton

|

+--javax.swing.JButton

Poelman & Associates, Inc. (c) 2003 51

JButton

• Used for a command
• Push and shows a state change visually (pliancy)
• Has a name, label text,

Poelman & Associates, Inc. (c) 2003 52

Adding items to the List

Poelman & Associates, Inc. (c) 2003 53

Add items to the model for the list

Poelman & Associates, Inc. (c) 2003 54

Changing the border of a list box

Poelman & Associates, Inc. (c) 2003 55

A Titled Border for a List Box

Poelman & Associates, Inc. (c) 2003 56

List Box Selection Modes
• Single
• Multiple_Interval
• Single_Interval

Poelman & Associates, Inc. (c) 2003 57

Setting the Button group on a radio
button

Poelman & Associates, Inc. (c) 2003 58

Setting the Mnemonics

Poelman & Associates, Inc. (c) 2003 59

Final Dialog Version

Poelman & Associates, Inc. (c) 2003 60

JComboBox
• Two styles in the app –

non-editable and editable
• If you use the editable

type you should check the
input of the user to make
sure it is acceptable.

• You can change the style
by changing the
editable property.

Poelman & Associates, Inc. (c) 2003 61

Creating a
JavaGUI -> SampleForms -> Application

Poelman & Associates, Inc. (c) 2003 62

Menu and Menu item hierarchy that
defines the menus for the app

Poelman & Associates, Inc. (c) 2003 63

The default menus

Poelman & Associates, Inc. (c) 2003 64

Poelman & Associates, Inc. (c) 2003 65

Copy and paste a menu into the
hierarchy

Poelman & Associates, Inc. (c) 2003 66

This shows 2 Edit menus

