
UNIT-4 
Dynamic Programming: Introduction, 0/1 Knapsack problem, All pairs 
shortest paths, Optimal Binary search trees, Travelling salesman problem.  

 
Q) Briefly explain  dynamic programming. 
 

Dynamic Programming  is  a general algorithm design technique for solving 

problems defined by recurrences with overlapping subproblems i.e; 

subproblems are not independent they subproblems share subsubproblems 

 

Dynamic Programming is an algorithm design method that can be used 

when the solution to a problem can be viewed as the result of a sequence of 

decisions. 

 

Main idea: 

- set up a recurrence relating a solution to a larger instance  

to solutions of some smaller instances 

-  solve smaller instances once 

- record solutions in a table  

- extract solution to the initial instance from that table 

 

In DP many decision sequences may be generated, however sequences 

containing suboptimal subsequences can not be optimal and hence they will 

not be generated. 

 

Let us suppose that we need to make a sequence of decisions x1,x2..xn. In 

forward approach the decisions on the xi are made in the order x1,x2..xn. 

In backward approach, the decisions on the xi are made in the order xn, xn, 

.. x2, x1. 

• Eg. Computing the nth Fibonacci number recursively (top-down): 

                                  F(n) 

            F(n-1)              +             F(n-2) 

F(n-2)     +     F(n-3)          F(n-3)     +     F(n-4) 

                     ...  



Computing the nth Fibonacci number using bottom-up iteration 

(dynamic programming) and recording values: 

  F(0) = 0  

  F(1) = 1  

  F(2) = 1+0 = 1 

  …     

  F(n-2) =  

  F(n-1) =  

  F(n) = F(n-1) + F(n-2)    

0 1 1 .. F(n-2) F(n-1) F(n) 

 

Q) What is principal of optimality? 

Principle of optimality: Suppose that in solving a problem, we have to make 

a sequence of decisions D1, D2, …, Dn. If this sequence is optimal, then the 

last k decisions, 1 <k <n must be optimal.  

e.g. the shortest path problem 

If i, i1, i2, …, j is a shortest path from i to j, then i1, i2, …, j must be a 

shortest path from i1to j. 

 

Q) Explain about transitive closure with an example. 

The transitive closure of a directed graph with n vertices can be defined as 

the n × n boolean matrix T = {tij}, in which the element in the ith row and the 

jth column is 1 if there exists a nontrivial path (i.e., directed path of a 

positive length) from the ith vertex to the jth vertex; otherwise, tij is 0. 

 

Time complexity: O(n3) 



 



 

 

 

 



Q) Explain All pairs shortest path(Floyd’s Warshall’s Algorithm) with 

suitable example. 

 

Given a weighted connected graph (undirected or directed), the all-pairs 

shortest paths problem asks to find the distances—i.e., the lengths of the 

shortest paths— from each vertex to all other vertices. 

•Let d k( i, j )be the length of a shortest path from i to j with intermediate 

vertices numbered not higher than k where 0 ≤ k ≤ n, then 

d0( i, j )=c( i, j )(no intermediate vertices at all) 

•d k( i, j )=min { dk-1( i, j ), dk-1( i, k )+ dk-1( k, j ) } 

–and d n( i, j )is the length of a shortest path from i to j 

 

we need to find dn with d0=cost matrix . 

•General formula: d k [ i, j]= min {d k-1[ i, j], d k-1[ i, k]+ d k-1[ k, j] } 

 

 

Time Complexity: O(n3) 





 

 



Q) Explain 0/1 knapsack problem using dynamic programming with 
suitable example. 
 

Knapsack Problem 
Given a set of items, each with a weight and a value, determine a subset of 

items to include in a collection so that the total weight is less than or equal 
to a given limit and the total value is as large as possible. 

 
Fractional Knapsack 
In this case, items can be broken into smaller pieces, hence we can select 

fractions of items. 
According to the problem statement, 

 There are n items in the store 

 Weight of ith item wi > 0 
 Profit for ith item pi>0 and 

 Capacity of the Knapsack is W 
In this version of Knapsack problem, items can be broken into smaller 
pieces. So, the thief may take only a fraction xi of ith item. 

0 ≤ xi ≤ 1 
 

0/1 Knapsack: 
In this item cannot be broken which means we should take the item as a 
whole or should leave it. That's why it is called 0/1 knapsack Problem. 
 

The classic dynamic programming approach, on the other hand, works 

bottom up: it fills a table with solutions to all smaller subproblems, but each 

of them is solved only once. An unsatisfying aspect of this approach is that 

solutions to some of these smaller subproblems are often not necessary for 

getting a solution to the problem given. Since this drawback is not present 

in the top-down approach, it is natural to try to combine the strengths of the 

top-down and bottom-up approaches.  

The goal is to get a method that solves only subproblems that are necessary 

and does so only once. Such a method exists; it is based on using memory 

functions. 

This method solves a given problem in the top-down manner but, in 

addition, maintains a table of the kind that would have been used by a 

bottom-up dynamic programming algorithm. Initially, all the table’s entries 

are initialized with a special ―null‖ symbol to indicate that they have not yet 

been calculated. Thereafter, whenever a new value needs to be calculated, 

the method checks the corresponding entry in the table first: if this entry is 

not ―null,‖ it is simply retrieved from the table; otherwise, it is computed by 

the recursive call whose result is then recorded in the table. 



 

Time Complexity:  

The time efficiency and space efficiency of this algorithm are both in θ(nW). 

The time needed to find the composition of an optimal solution is in O(n). 







 

 

Q) Explain travelling salesmen problem using dynamic programming 

with suitable example. 

Given a set of cities and distance between every pair of cities, the problem 

is to find the shortest possible route that visits every city exactly once and 

returns to the starting point. 



Let G=(V,E) be a directed graph with edge cost Cij. The variable Cij is define 

such that Cij > 0 every i,j and Cij = ∞ if (i,j) ∈ E. Let |V| = n and assume 

n>1. 

 

A tour of G is a directed simple cycle that include every vertex in V. The 

cost of a tour is the sum of the cost of the edges on the tour. The 

travelling salesperson problem is to find a tour of minimum cost without 

loss of generality, assume a tour is a simple path that starts and ends at 

vertex 1. 

Every tour consists of an edge (1,k) for some k ∈ V-{1} and a path from 

vertex k to vertex 1. The path from vertex k to vertex 1 goes through each 

vertex in V-{1,k} exactly once. It is easy to see that if the tour is optimal, 

then the path from k to 1 must be a shortest k to1 path going through all 

vertices in V-{1,k} 

Let g(i,S) be the length of a shortest path starting at vertex i, going through 

all vertices in S and terminating at vertex 1. The function g(1, V-{1}) is the 

length of an optimal salesperson tour. 

 

From the principal of optimality, it follows that 

g(1,V-{1}) = min {C1k + g(k, V-{1,k})} 

                  2 ≤ k ≤ n 
 

Generalizing above, we obtain for i E S 

      g(i,S) = min {Cij+g(j,S-{j})}  -- (1) 
                  j ∈ S 
 

Time complexity: O(n22n) as the computation of g(i,S) with|S| = k requires 

k-1 comparisons when solving equation (1). 

Space Complexity: O(n.2n) 

 





 

 

 

 

 

 

 

 



Q) Explain about Optimal Binary Search Tree with Successful and 

Unsuccessful search probabilities with suitable example. 

OBST is a binary search tree which provides the smallest possible search 

time (or expected search) for a given sequence of accesses (or access 

probabilities). 

The search time can be improved in Optimal Cost Binary Search Tree, 

placing the most frequently used data in the root and closer to the root 

element, while placing the least frequently used data near leaves and in 

leaves. 

Eg. 

 

For our tiny example, we could find the optimal tree by generating all 14 

binary search trees with 4 keys. As a general algorithm, this exhaustive-
search approach is unrealistic: the total number of binary search trees with 
n keys is equal to the nth Catalan number, 

 



 

 

Given a set of identifiers {a1,a2,..,an}. Suppose we need to construct a binary 

search tree and p(i) be the probability with which we search for ai then: 

If a binary search tree represents n identifiers, then there will be exactly n 

internal nodes and n+1 external nodes. Every node internal node represents 

a point where a successful search may terminate. Every external node 

represents a point where an unsuccessful search may terminate. 

If a successful search terminates at an internal node at level l, then l 

comparison is needed. Hence the expected cost contribution from the 

internal node for ai is p(i)*level(ai). 

The identifiers not in the binary search tree can be partitioned into n+1 

equivalence classes Ei, 0 ≤ i ≤ n. If the failure node for Ei is at level l, then 

only l -1 comparison are needed.  

Let q(i) be the probability that the identifier x being searched for is in Ei, 

then clearly ∑    
      ∑    

    = 1, and the cost contribution for the failure 

node for Ei is q(i)*(level (Ei) - 1). 

There fore, the cost of the optimal binary search tree is: 

    ∑    
                ∑                 

 

   
 



 

Time complexity: The computing time for above algorithm is O(n2). To 

construct obst from r[i,j] is O(n). So total time to construct obst is O(n3). 



Space complexity = O(n2) 

 

 



 



 



 



 

Successful Search cost of the tree = 1(2) + 4(1) + 2(2) + 1(3) = 13. 

Unsuccessful search cost of the tree = 4(3-1) + 2(3-1) +  4(3-1) +  1(4-1) + 

1(4-1) = 26 

So, total cost of the tree = 13+26 =39. 

 

Q) Explain about Optimal Binary Search Tree with Successful search 

probabilities with suitable example. 

• OBST is a binary search tree which provides the smallest possible 

search time (or expected search) for a given sequence of accesses (or 

access probabilities). 



• The search time can be improved in Optimal Cost Binary Search Tree, 

placing the most frequently used data in the root and closer to the 

root element, while placing the least frequently used data near leaves 

and in leaves. 

• Given a set of identifiers {a1,a2,..,an}. Suppose we need to construct a 

binary search tree and p(i) be the probability with which we search for 
ai then: 

If a successful search terminates at an internal node at level l, 

then l comparison is needed. Hence the expected cost contribution 
from the internal node for ai is p(i)*level(ai). 
 

• There fore, the cost of the optimal binary search tree is: 
    ∑    

              
 

 

 Time Complexity: The computing time for above algorithm is O(n2). To 

construct obst from r[i,j] is O(n). So total time to construct obst is O(n3). 

Space complexity: O(n2) 



 



 



 



 

 

 


