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      UNIT 5  - GRAPHS 

The Graph ADT Introduction  

Definition 

Graph representation 

Elementary graph operations BFS, DFS 

Introduction to Graphs 

Graph is a non linear data structure; A map is a well-known example of a graph. In a map various connections are 

made between the cities. The cities are connected via roads, railway lines and aerial network. We can assume that 

the graph is the interconnection of cities by roads.  Euler used graph theory to solve Seven Bridges of Königsberg 

problem. Is there a possible way to traverse every bridge exactly once – Euler Tour 

     

Figure: Section of the river Pregal in Koenigsberg and Euler's graph. 

Defining the degree of a vertex to be the number of edges incident to it, Euler showed that there is a walk starting 

at any vertex, going through each edge exactly once and terminating at the start vertex iff the degree of each, 

vertex is even. A walk which does this is called Eulerian. There is no Eulerian walk for the Koenigsberg bridge 

problem as all four vertices are of odd degree. 

A graph contains a set of points known as nodes (or vertices) and set of links known as edges (or Arcs) which 

connects the vertices.  

A graph is defined as Graph is a collection of vertices and arcs which connects vertices in the graph. A graph G is 

represented as G = ( V , E ), where V is set of vertices and E is set of edges. 

Example: graph G can be defined as G = ( V , E ) Where V = {A,B,C,D,E} and  

E =  {(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(E,D)}.    This is a graph with 5 vertices and 6 edges. 

                             

Graph Terminology 

1.Vertex : An individual data element of a graph is called as Vertex. Vertex is also known as node. In above 

example graph, A, B, C, D & E are known as vertices. 

2.Edge : An edge is a connecting link between two vertices. Edge is also known as Arc. An edge is represented as 

(starting Vertex, ending Vertex).  

In above graph, the link between vertices A and B is represented as (A,B).  

Edges are three types: 

1.Undirected Edge - An undirected edge is a bidirectional edge. If there is  an undirected edge between vertices A 

and B then edge (A , B) is equal to edge (B , A). 

2.Directed Edge - A directed edge is a unidirectional edge. If there is a directed edge between vertices A and B 

then edge (A , B) is not equal to edge (B , A). 
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3.Weighted Edge - A weighted edge is an edge with cost on it. 

Types of Graphs 

1.Undirected Graph 

A graph with only undirected edges is said to be undirected graph. 

                                                       

2.Directed Graph 

A graph with only directed edges is said to be directed graph. 

                                                     

3.Complete Graph  

 A graph in which any V node is adjacent to all other nodes present in the graph is known as a complete graph. An 

undirected graph contains the edges that are equal to edges = n(n-1)/2 where n is the number of vertices present in 

the graph. The following figure shows a complete graph. 

                                                           

4.Regular Graph  

Regular graph is the graph in which nodes are adjacent to each other, i.e., each node is accessible from any other 

node. 

                                                         
 

5.Cycle Graph   

A graph having cycle is called cycle graph. In this case the first and last nodes are the same. A closed simple path 

is a cycle. 
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6.Acyclic Graph   

A graph without cycle is called acyclic graphs. 

                                       

7. Weighted Graph  

 A graph is said to be weighted if there are some non negative value assigned to each edges of the graph. The 

value is equal to the length between two vertices. Weighted graph is also called a network.  

                                         

Outgoing Edge 

A directed edge is said to be outgoing edge on its orign vertex. 

Incoming Edge 

A directed edge is said to be incoming edge on its destination vertex. 

Degree 

Total number of edges connected to a vertex is said to be degree of that vertex. 

Indegree 

Total number of incoming edges connected to a vertex is said to be indegree of that vertex. 

Outdegree 

Total number of outgoing edges connected to a vertex is said to be outdegree of that vertex. 

Parallel edges or Multiple edges 

If there are two undirected edges to have the same end vertices, and for two directed edges to have the same 

origin and the same destination. Such edges are called parallel edges or multiple edges. 

Self-loop 

An edge (undirected or directed) is a self-loop if its two endpoints coincide. 

Simple Graph 

A graph is said to be simple if there are no parallel and self-loop edges. 
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Adjacent nodes  

When there is an edge from one node to another then these nodes are called adjacent nodes. 

Incidence 

 In an undirected graph the edge between v1 and v2 is incident on node v1 and v2. 

Walk  

 A walk is defined as a finite alternating sequence of vertices and edges, beginning and ending with vertices, such 

that each edge is incident with the vertices preceding and following it. 

Closed walk  

 A walk which is to begin and end at the same vertex is called close walk. Otherwise it is an open walk. 

                                                   
 

If e1,e2,e3,and e4 be the edges of pair of vertices (v1,v2),(v2,v4),(v4,v3) and (v3,v1) respectively ,then v1 e1 v2 

e2 v4 e3 v3 e4 v1 be its closed walk or circuit. 

Path  

 A open walk in which no vertex appears more than once is called a path. 

                                                       

If e1 and e2 be the two edges between the pair of vertices (v1,v3) and (v1,v2) respectively, then v3 e1 v1 e2 v2 be 

its path. 

Length of a path  

The number of edges in a path is called the length of that path. In the following, the length of the path is 3. 

 

                                                 

 An open walk Graph 

Circuit  

 A closed walk in which no vertex (except the initial and the final vertex) appears more than once is called a 

circuit. 

A circuit having three vertices and three edges. 



5 
 

 

                                                                  

Sub Graph  

A graph S is said to be a sub graph of a graph G if all the vertices and all the edges of S are in G, and each edge of 

S has the same end vertices in S as in G. A subgraph of G is a graph G’ such that V(G’)  V(G) and E(G’)  

E(G) 

 

                                   

 
 

 

Connected Graph  

A graph G is said to be connected if there is at least one path between every pair of vertices in G. Otherwise,G is 

disconnected. 

 

                     
 A connected graph G     A disconnected graph G 

This graph is disconnected because the vertex v1 is not connected with the other vertices of the graph. 

Degree  

In an undirected graph, the number of edges connected to a node is called the degree of that node or the degree of 

a node is the number of edges incident on it. 

 In the above graph, degree of vertex v1 is 1, degree of vertex v2 is 3, degree of v3 and v4 is 2 in a connected 

graph.  

Indegree  

The indegree of a node is the number of edges connecting to that node or in other words edges incident to it. 

                                                 

In the above graph,the indegree of vertices v1, v3 is 2, indegree of vertices v2, v5 is 1 and indegree of v4 is zero. 
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Outdegree  

The outdegree of a node (or vertex) is the number of edges going outside from that node or in other words the  

ADT of Graph: 

Structure Graph is  

  objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices 

  functions: for all graph  Graph, v, v1 and v2  Vertices  

    Graph Create()::=return an empty graph 

    Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no edge. 

    Graph InsertEdge(graph, v1,v2)::= return a graph with new edge between v1 and v2  

    Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to it are removed 

    Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is removed 

    Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE 

    List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v 

Graph Representations 

Graph data structure is represented using following representations 

1. Adjacency Matrix 

2. Adjacency List 

3. Adjacency Multilists 

1.Adjacency Matrix 

In this representation, graph can be represented using a matrix of size total number of vertices by total number of 

vertices; means if a graph with 4 vertices can be represented using a matrix of 4X4 size. 

 In this matrix, rows and columns both represent vertices. 

This matrix is filled with either 1 or 0. Here, 1 represents there is an edge from row vertex to column vertex and 0 

represents there is no edge from row vertex to column vertex. 

Adjacency Matrix : let G = (V, E) with n vertices, n  1. The adjacency matrix of G is a 2-dimensional n  n 

matrix, A, A(i, j) = 1 iff (vi, vj) E(G) (vi, vj for a diagraph), A(i, j) = 0 otherwise. 

example :   for undirected graph 

 

 

 

 

 

For a Directed graph  
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The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be 

symmetric.  

Merits of Adjacency Matrix: 

From the adjacency matrix, to determine the connection of vertices is easy 

The degree of a vertex is   

For a digraph, the row sum is the out_degree, while the column sum is the in_degree  

     

The space needed to represent a graph using adjacency matrix is n
2
 bits. To identify the edges in a graph, 

adjacency matrices will require at least O(n
2
) time. 

2. Adjacency List 

In this representation, every vertex of graph contains list of its adjacent vertices. The n rows of the adjacency 

matrix are represented as n chains. The nodes in chain I represent the vertices that are adjacent to vertex i. 

It can be represented in two forms. In one form, array is used to store n vertices and chain is used to store its 

adjacencies. Example: 

   
So that we can access the adjacency list for any vertex in O(1) time. Adjlist[i] is a pointer to to first node in the 

adjacency list for vertex i. Structure is  

#define MAX_VERTICES 50 

typedef struct node *node_pointer; 

typedef struct node { 

    int vertex; 

    struct node *link; 

}; 

node_pointer graph[MAX_VERTICES]; 

int n=0; /* vertices currently in use */ 

 

Another type of representation is given below. 

example: consider the following directed graph representation implemented using linked list 
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This representation can also be implemented using array  

 

 

Sequential representation of adjacency list is  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

9 11 13 15 17 18 20 22 23 2 1 3 0 0 3 1 2 5 6 4 5 7 6 

 

Graph  

Instead of chains, we can use sequential representation into an integer array with size n+2e+1. For 0<=i<n, 

Array[i] gives starting point of the list for vertex I, and array[n] is set to n+2e+1. The adjacent vertices of node I 

are stored sequentially from array[i]. 

For an undirected graph with n vertices and e edges, linked adjacency list requires an array of size n and 2e chain 

nodes. For a directed graph, the number of list nodes is only e. the out degree of any vertex may be determined by 

counting the number of nodes in its adjacency list. To find in-degree of vertex v, we have to traverse complete 

list.  

To avoid this, inverse adjacency list is used which contain in-degree. 

 

 

3.Adjacency Multilists 

In the adjacency-list representation of an undirected graph each edge (u, v) is represented by two entries one on 

the list for u and the other on tht list for v. As we shall see in some situations it is necessary to be able to determin 

ie ~ nd enty for a particular  edge and mark that edg as having been examined. This can be accomplished easily 

if the adjacency lists are actually maintained as multilists (i.e., lists in which nodes may be shared among several 

lists). For each edge there will be exactly one node but this node will be in two lists (i.e. the adjacency lists for 

each of the two nodes to which it is incident).  

For adjacency multilists, node structure is 

typedef struct edge *edge_pointer; 

typedef struct edge { 

    short int marked; 

    int vertex1, vertex2; 

    edge_pointer path1, path2; 

}; 

edge_pointer graph[MAX_VERTICES]; 



9 
 

 
Lists: vertex 0: N0->N1->N2, vertex 1: N0->N3->N4 

          vertex 2: N1->N3->N5, vertex 3: N2->N4->N5 

 
Figure: Adjacency multilists for given graph 

 

4. Weighted edges 

In many applications the edges of a graph have weights assigned to them. These weights may represent the 

distance from one vertex to another or the cost of going from one; vertex to an adjacent vertex In these 

applications the adjacency matrix entries A [i][j] would keep this information too. When adjacency lists are used 

the weight information may be kept in the list’nodes by including an additional field weight. A graph with 

weighted edges is called a network. 

 
 

 

ELEMENTARY GRAPH OPERATIONS 

Given a graph G = (V E) and a vertex v in V(G) we wish to visit all vertices in G that are reachable from v (i.e., 

all vertices that are connected to v). We shall look at two ways of doing this: depth-first search and breadth-first 

search. Although these methods work on both directed and undirected graphs the following discussion assumes 

that the graphs are undirected. 

Depth-First Search  

 Begin the search by visiting the start vertex v 

o If v has an unvisited neighbor, traverse it recursively 

o Otherwise, backtrack 

 Time complexity 

o Adjacency list: O(|E|) 

o Adjacency matrix: O(|V|
2
) 

 

We begin by visiting the start vertex v. Next an unvisited vertex w adjacent to v is selected, and a depth-first 

search from w is initiated. When a vertex u is reached such that all its adjacent vertices have been visited, we back 

up to the last vertex visited that has an unvisited vertex w adjacent to it and initiate a depth-first search from w. 

The search terminates when no unvisited vertex can be reached from any of the visited vertices.  

DFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph without any loops. 

We use Stack data structure with maximum size of total number of vertices in the graph to implement DFS 
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traversal of a graph. 

 

We use the following steps to implement DFS traversal... 

Step 1: Define a Stack of size total number of vertices in the graph. 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to the Stack. 

Step 3: Visit any one of the adjacent vertex of the verex which is at top of the stack which is not visited and push 

it on to the stack. 

Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the stack. 

Step 5: When there is no new vertex to be visit then use back tracking and pop one vertex from the stack. 

Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty. 

Step 7: When stack becomes Empty, then produce final spanning tree by removing unused edges from the graph 

This function is best described recursively as in Program. 

#define FALSE 0 

#define TRUE 1 

 int visited[MAX_VERTICES]; 

void dfs(int v) 

{ 

  node_pointer w; 

  visited[v]= TRUE; 

  printf(“%d”, v); 

  for (w=graph[v]; w; w=w->link) 

    if (!visited[w->vertex])  

      dfs(w->vertex); 

} 

Consider the graph G of Figure 6.16(a), which is represented by its adjacency lists as in Figure 6.16(b). If a depth-

first search is initiated from vertex 0 then the vertices of G are visited in the following order: 0 1 3 7 4 5 2 6. 

Since DFS(O) visits all vertices that can be reached from 0 the vertices visited, together with all edges in 

G incident to these vertices form a connected component of G. 

      
 

Figure: Graph and its adjacency list representation, DFS spanning tree 

Analysis or DFS: 
When G is represented by its adjacency lists, the vertices w adjacent to v can be determined by following a chain 

of links. Since DFS examines each node in the adjacency lists at most once and there are 2e list nodes the time to 

complete the search is O(e). If G is represented by its adjacency matrix then the time to determine all 

vertices adjacent to v is O(n). Since at most n vertices are visited the total time is O(n
2
). 

Breadth-First Search 
In a breadth-first search, we begin by visiting the start vertex v. Next all unvisited vertices adjacent to v are 

visited. Unvisited vertices adjacent to these newly visited vertices are then visited and so on. Algorithm BFS 

(Program 6.2) gives the details. 

typedef struct queue *queue_pointer; 

typedef struct queue { 

    int vertex; 

https://www.chelponline.com/wp-content/uploads/2015/11/Capture26.jpg
https://www.chelponline.com/wp-content/uploads/2015/11/Capture26.jpg
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    queue_pointer link; 

}; 

void addq(queue_pointer *,  

        queue_pointer *, int); 

int deleteq(queue_pointer *); 

void bfs(int v) 

{ 

  node_pointer w; 

  queue_pointer front, rear; 

  front = rear = NULL; 

  printf(“%d”, v); 

  visited[v] = TRUE; 

  addq(&front, &rear, v); 

while (front) { 

    v= deleteq(&front); 

    for (w=graph[v]; w; w=w->link) 

      if (!visited[w->vertex]) { 

        printf(“%d”, w->vertex); 

        addq(&front, &rear, w->vertex); 

        visited[w->vertex] = TRUE; 

      } 

  } 

}  

Steps: 

BFS traversal of a graph, produces a spanning tree as final result. Spanning Tree is a graph without any loops. We 

use Queue data structure with maximum size of total number of vertices in the graph to implement BFS traversal 

of a graph. 

 

We use the following steps to implement BFS traversal... 

Step 1: Define a Queue of size total number of vertices in the graph. 

Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue. 

Step 3: Visit all the adjacent vertices of the vertex which is at front of the Queue which is not visited and insert 

them into the Queue. 

Step 4: When there is no new vertex to be visit from the vertex at front of the Queue then delete that vertex from 

the Queue. 

Step 5: Repeat step 3 and 4 until queue becomes empty. 

Step 6: When queue becomes Empty, then produce final spanning tree by removing unused edges from the graph 

Analysis Of BFS: 
Each visited vertex enters the queue exactly once. So the while loop is iterated at most n times If an adjacency 

matrix is used the loop takes O(n) time for each vertex visited. The total time is therefore, O(n
2
). If adjacency lists 

are used the loop has a total cost of d0 + … + dn-1 = O(e), where d is the degree of vertex i. As in the case of DFS 

all visited vertices together with all edges incident to them, form a connected component of G. 

3.Connected Components 

If G is an undirected graph, then one can determine whether or not it is connected by simply making a call to 

either DFS or BFS and then determining if there is any unvisited vertex. The connected components of a graph 

may be obtained by making repeated calls to either DFS(v) or BFS(v); where v is a vertex that has not yet been 

visited. This leads to function Connected(Program 6.3), which determines the connected components of G. The 

algorithm uses DFS (BFS may be used instead if desired). The computing time is not affected. Function 

connected –Output outputs all vertices visited in the most recent invocation of DFS together with all edges 

incident on these vertices. 

void connected(void){ 

   for (i=0; i<n; i++) {   

       if (!visited[i]) {   

           dfs(i);            

  printf(“\n”);         }     } } 

Analysis of Components: 
If G is represented by its adjacency lists, then the total time taken by dfs is O(e). Since the for loops take O(n) 

time, the total time to generate all the Connected components is O(n+e). If adjacency matrices are used,then the 

time required is O(n
2
) 
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