Classic MapReduce:

A job run in classic MapReduce is illustrated in Figure 6-1. At the highest level, there are
four independent entities:

* The client, which submits the MapReduce job.

* The jobtracker, which coordinates the job run. The jobtracker is a Java application whose
main class is JobTracker.

* The tasktrackers, which run the tasks that the job has been split into. Tasktrackers are Java
applications whose main class is TaskTracker.

» The distributed filesystem (normally HDFS, covered in Chapter 3), which is used for
sharing job files between the other entities.

2:get rewjob D

+ e L
MapBRedwee |1:runjon 4: pahmit job
program A B st S

dlient JVM

DebTemeonr

i%: inigialize job
r

4 & reinee ¥ o
client mode . . nr-m-_ri_n_'_.'-_;-- Totracker ned
F-copy job | - hearfeal
ML et Lask)
L4
F'ﬂam - Tasklacker
[E-ﬁ-ﬂFS}l B; petriewe job
MERD LIEES
o L Oh ;
b 4
child INM

tasktradker node

Figure 6-1. How Hadoop runs a MapRedure job uzing the classic frameuork

Job Submission:
The submit() method on Job creates an internal JobSummitter instance and calls
submitJoblnternal() on it (step 1 in Figure 6-1).

The job submission process implemented by JobSummitter does the following:
e Asks the jobtracker for a new job ID (by calling getNewJobld() on JobTracker) (step
2).
e Computes the input splits for the job. Copies the resources needed to run the job,
including the job JAR file, the configuration file, and the computed input splits, to the
jobtracker’s filesystem in a directory named after the job ID. (step 3).

1

e Tells the jobtracker that the job is ready for execution (by calling submitJob() on
JobTracker) (step 4).

Job Initialization:

When the JobTracker receives a call to its submitJob() method, it puts it into an internal
queue from where the job scheduler will pick it up and initialize it. Initialization involves
creating an object to represent the job being run (step 5).

To create the list of tasks to run, the job scheduler first retrieves the input splits computed by
the client from the shared filesystem (step 6). It then creates one map task for each split.

Task Assignment:

Tasktrackers run a simple loop that periodically sends heartbeat method calls to the
jobtracker. Heartbeats tell the jobtracker that a tasktracker is alive As a part of the heartbeat, a
tasktracker will indicate whether it is ready to run a new task, and if it is, the jobtracker will
allocate it a task, which it

communicates to the tasktracker using the heartbeat return value (step 7).

Task Execution:

Now that the tasktracker has been assigned a task, the next step is for it to run the task. First,
it localizes the job JAR by copying it from the shared filesystem to the tasktracker’s
filesystem. It also copies any files needed from the distributed cache by the application to the
local disk; see “Distributed Cache” on page 288 (step 8).

TaskRunner launches a new Java Virtual Machine (step 9) to run each task in (step 10).

Progress and Status Updates:

MapReduce jobs are long-running batch jobs, taking anything from minutes to hours to run.
Because this is a significant length of time, it’s important for the user to get feedback on how
the job is progressing. A job and each of its tasks have a status.

When a task is running, it keeps track of its progress, that is, the proportion of the task
completed.

Job Completion:

When the jobtracker receives a notification that the last task for a job is complete (this will be
the special job cleanup task), it changes the status for the job to “successful.”

Shuffle and Sort:

The Map Side :

MapReduce makes the guarantee that the input to every reducer is sorted by key. The process by
which the system performs the sort—and transfers the map outputs to the reducers as inputs—is
known as the shuffle.

Each map task has a circular memory buffer that it writes the output to. The buffer is 100 MB by
default, a size which can be tuned by changing the io.sort.mb property.When the contents of the
buffer reaches a certain threshold size (io.sort.spill.per cent, default 0.80, or 80%), a background
thread will start to spill the contents to disk. Each time the memory buffer reaches the spill
threshold, a new spill file is created. Spills are written in round-robin fashion to the directories.
Before it writes to disk, the thread first divides the data into partitions corresponding to the reducers
that they will ultimately be sent to. Within each partition, the background thread performs an in-
memory sort by key, and if there is a combiner function, it is run on the output of the sort. Running
the combiner function makes for a more compact map output, so there is less data to write to local
disk and to transfer to the reducer.

so after the map task has written its last output record there could be several spill files.Before the
task is finished, the spill files are merged into a single partitioned and sorted output file.

If there are at least three spill files (set by the min.num.spills.for.combine property) then the
combiner is run again before the output file is written. If there are only one or two spills, then the
potential reduction in map output size is not worth the overhead in invoking the combiner.

Copy “Sort” Reduce
phase phase phase
map task E%E{:‘;E,'(‘{k reduce task
spill to dis
bufferin ¢ ’- :—
memor 4
- merge P
: ; ~
input 9 < Mesge :— output
split

partitions

Other maps s p. Other reduces

Figure 6-6. Shuffle and sort in MapReduce

The Reduce Side :

Let’s turn now to the reduce part of the process.

The map output file is sitting on the local disk of the machine that ran the map task.But now it is
needed by the machine that is about to run the reduce task for the partition. The reduce task needs
the map output for its particular partition from several map tasks across the cluster. The copy phase
of the reduce task. The reduce task has a small number of copier threads so that it can fetch map
outputs in parallel. The default is five threads, but this number can be changed by setting the
mapred.reduce.parallel.copies property.

The map outputs are copied to the reduce task JVM’s memory if they are small enough,otherwise
they are copied to disk.When the in-memory buffer reaches a threshold size (controlled by

3

mapred.job.shuffle.merge.percent), or reaches a threshold number of map outputs
(mapred.inmem.merge.threshold), it is merged and spilled to disk.

When all the map outputs have been copied, the reduce task moves into the merge phase.which
merges the map outputs, maintaining their sort ordering. This is done in rounds. For example, if
there were 50 map outputs, and the merge factor was 10 (the default, controlled by the io.sort.factor
property, just like in the map’s merge),then there would be 5 rounds. Each round would merge 10
files into one, so at the end there would be five intermediate files.

During the reduce phase, the reduce function is invoked for each key in the sorted output. The
output of this phase is written directly to the output filesystem, typically HDFS.

Configuration Tuning :
Table 6-1. Map-side tuning properties

Property name Type Default value Description

io.sort.mb int 100 The size, in megabytes, of the
memory buffer to usewhilesorting
map output.

io.sort.record.percent float 0.05 The proportion of io. sort.mb

reserved for storing record bound-
aries of the map outputs. The re-
maining space is used for the map
output records themselves. This
property was removed in release
0.21.0 as the shuffle code was im-
proved to do a better job of using
all the available memory for map
output and accounting informa-
tion.

io.sort.spill.percent float 0.80 The threshold usage proportion for
both the map output memory
buffer and the record boundaries
index to start the process of spilling
to disk.

io.sort.factor int 10 The maximum number of streams
tomergeatoncewhensortingfiles.
This property is also used in the re-
duce. It's fairly common toincrease
this to 100.

min.num.spills.for.
combine

mapred.compress.map.
output

mapred.map.output.
compression.codec

task
tracker.http.threads

The minimum number of spill files
needed for the combiner to run (if
a combiner is specified).

Compress map outputs.

The compression codec to use for
map outputs.

The number of worker threads per

tasktracker for serving the map
outputs to reducers. This is a clus-
ter-wide setting and cannot be set
by individual jobs. Not applicable
in MapReduce 2.

Table 6-2. Reduce-side tuning properties

Property name

mapred.reduce.parallel.

copies

mapred.reduce.copy.backoff

io.sort.factor

mapred.job.shuffle.input.

buffer.percent

mapred.job.shuffle.merge.

percent

mapred.inmem.merge.threshold

The number of threads used to copy map outputs

The maximum amount of time, in seconds, to spend
retrieving one map output for a reducer before de-
claring it as failed. The reducer may repeatedly re-
attempt a transfer within this time if it fails (using

The maximum number of streams to merge at once
when sorting files. This property is also used in the

The proportion of total heap size to be allocated to
the map outputs buffer during the copy phase of the

Thethreshold usage proportion for the map outputs
buffer (defined by mapred. job. shuf
fle.input.buffer.percent)forstarting
the process of merging the outputs and spilling to

The threshold number of map outputs for starting
the process of merging the outputs and spilling to
disk. Avalue of 0 orless meansthereisno threshold,
and the spill behavior is governed solely by
mapred.job.shuffle.merge.percent

int 3
boolean false
Classname org.apache.hadoop.io.
compress .DefaultCodec
int 40
Type Defaultvalue Description
int g
to the reducer.
int 300
exponential backoff).
int 10
map.
float 0.70
shuffle.
float 0.66
disk.
int 1000
float 0.0

mapred.job.reduce.input.

buffer.percent

The proportion of total heap size to be used for re-
taining map outputs in memory during the reduce.
For the reduce phase to begin, the size of map out-
puts in memory must be no more than this size. By

Hadoop Streaming

Hadoop provides an APl to MapReduce that allows you to write your map and reduce functions in
languages other than Java. Hadoop Streaming uses Unix standard streams as the interface between
Hadoop and your program, so you can use any language that can read standard input and write to
standard output to write your MapReduce program.

Hadoop Pipes Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce. Unlike
Streaming, which uses standard input and output to communicate with the map and reduce code,
Pipes uses sockets as the channel over which the tasktracker communicates with the process running
the C++ map or reduce function. JNI is not used.

Streaming Pipes

TaskTracker

TaskTracker

launch § launch

Y Y
child JYM child JVM
Child Child
run run
Maplask Maplask
or or
ReduceTask ReduceTask
N . A ; . : s
input i | i output i input i | i output
key/values : ! key/values key/values : ! key/values
stdin ¥ | “std out ¥ | “sodket
.., a 'Y C
++ wrapper
launc Streaming launch library
process
(++ Map or
Reduce class
tasktracker node tasktracker node

Figure 6-2. The relationship of the Streaming and Pipes executable to the tasktracker and its child
Map Reduce Types:
The map and reduce functions in Hadoop MapReduce have the following general form:
map: (K1, V1) — list(K2, V2)
reduce: (K2, list(V2)) — list(K3, V3)
In general, the map input key and value types (K1 and V1) are different from the map output
types (K2 and V2). However, the reduce input must have the same types as the map output,

although the reduce output types may be different again (K3 and V3).

6

public void map(LongWritable key, Text value, Context context)

context.write(new Text(year), new IntWritable(airTemperature));

}
public void reduce(Text key, Iterable <IntWritable> values, Context context)

context.write(key, new IntWritable(maxValue));

}

public void combiner(Text key, Iterable <IntWritable> values, Context context)

context.write(key, new IntWritable(maxValue));

}

If a combine function is used, then it is the same form as the reduce function (and is an
implementation of Reducer), except its output types are the intermediate key and value types
(K2 and V2), so they can feed the reduce function:

map: (K1, V1) — list(K2, V2)
combine: (K2, list(V2)) — list(K2, V2)
reduce: (K2, list(V2)) — list(K3, V3)

Often the combine and reduce functions are the same, in which case, K3 is the same as K2,
and V3 is the same as V2.

Input types are set by the input format. So, for instance, a TextlnputFormat generates keys of
type LongWritable and values of type Text. The other types are set explicitly by calling the
methods on the Job as follows.

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

So if K2 and K3 are the same, you don’t need to call setMapOutputKeyClass(), since it falls
back to the type set by calling setOutputKeyClass(). Similarly, if V2 and V3 are the same,
you only need to use setOutputValueClass().

Table 7-1. Configuration of MapReduce types in the new API

Froparty

Froperties for configuring fypes:

napreduce. job . dnputfomat. class

napreduce . map output. key.class

napreduce . mp . output. value. class
napreduce. job.output. key.class

napreduce . job .output. value.class
Fropertiesthat mu s be con setent withthe types
napreduce. job.map. class

mapreduce . job.combine .class
mapreduce. job . partitioner.class
mapreduce. job.output. key.comparateor.class
mapreduce . job.output. group.comparator.class
mapreduce. job.reduce.class

ma preduce . job.outputformat .class

lob setter method Qutput types

K3 LE]

Input tpes
k1 Vi

Intermediate ty pas
K2 V2

setInputFormatClass()
sethaplutputkeytlass()
setMaplutputvalueClass()
setiutputkeyClass()
setlutputvalueClass()

setMapperClass()
setComblnerclass()
setPartitionerClass()
setSortComparatorClass()
setGroupingComparatorClass()
setReducerclass()

setOutputFomatClass)

Input Formats:

Hadoop can process many different types of data formats, from flat text files to databases.

The Relationship Between Input Splits and HDFS Blocks Figure 7-3 shows an example.
A single file is broken into lines, and the line boundaries do not correspond with the HDFS
lock boundaries. Splits honor logical record boundaries,in this case lines, so we see that the
first split contains line 5, even though it spans the first and second block. The second split

starts at line 6.

i split i split i split i
file
|mes1|1|3|4|5,‘|7|3|’.“’|"
block block block block
boundary boundary boundary boundary

Figure 7-3. Logical records and HDFS blocks for TextInputFormat

Text Input:

TextInputFormat :

TextlnputFormat is the default InputFormat. Each record is a line of input. The key, a
LongWritable, is the byte offset within the file of the beginning of the line. The value is the

contents of the line.

So a file containing the following text:
On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

The records are interpreted as the following
key-value pairs:

(0, On the top of the Crumpetty Tree)
(33, The Quangle Wangle sat,)

(57, But his face you could not see,)

(89, On account of his Beaver Hat.)

KeyValueTextInputFormat

TextlnputFormat’s keys, being simply the offset within the file, are not normally very useful.
It is common for each line in a file to be a key-value pair, separated by a delimiter such as a
tab character.

You can specify the separator via the mapreduce.input.keyvaluelinerecor
dreader.key.value.separator property (or key.value.separator.in.input.line in the old API).
It is a tab character by default. Consider the following input file, where — represents a
(horizontal) tab character:

linel —On the top of the Crumpetty Tree
line2—The Quangle Wangle sat,

line3— But his face you could not see,
line4—On account of his Beaver Hat.

Like in the TextlnputFormat case, the input is in a single split comprising four records,
although this times the keys are the Text sequences before the tab in each line:

(linel, On the top of the Crumpetty Tree)
(line2, The Quangle Wangle sat,)

(line3, But his face you could not see,)
(line4, On account of his Beaver Hat.)

NLinelnputFormat

With TextlnputFormat and KeyValueTextinputFormat, each mapper receives a variable
number of lines of input. The number depends on the size of the split and the length of the
lines. If you want your mappers to receive a fixed number of lines of input, then
NLinelnputFormat is the InputFormat to use. Like TextlnputFormat, the keys are the byte
offsets within the file and the values are the lines themselves.

N refers to the number of lines of input that each mapper receives. With N set to one (the
default), each mapper receives exactly one line of input.

On the top of the Crumpetty Tree
The Quangle Wangle sat,

But his face you could not see,

On account of his Beaver Hat.

If, for example, N is two, then each split contains two lines. One mapper will receive the first
two key-value pairs:

(0, On the top of the Crumpetty Tree)

(33, The Quangle Wangle sat,)

And another mapper will receive the second two key-value pairs:
(57, But his face you could not see,)
(89, On account of his Beaver Hat.)

XML

Most XML parsers operate on whole XML documents, so if a large XML document is made
up of multiple input splits, then it is a challenge to parse these individually.

Large XML documents that are composed of a series of “records” (XML document
fragments) can be broken into these records using simple string or regular-expression
matching to find start and end tags of records.

set your input format to StreamlnputFormat and set the stream.recordreader.class
property to org.apache.hadoop.streaming.StreamXmlRecordReader to use xml as an
input format.

To take an example, Wikipedia provides dumps of its content in XML form, which are
appropriate for processing in parallel using MapReduce using this approach.

Binary Input :

SequenceFilelnputFormat

Hadoop’s sequence file format stores sequences of binary key-value pairs. Sequence files are
well suited as a format for MapReduce data since they are splittable they support
compression as a part of the format

SequenceFileAsTextInputFormat

SequenceFileAsTextIlnputFormat is a variant of SequenceFilelnputFormat that converts the
sequence file’s keys and values to Text objects.

SequenceFileAsBinarylnputFormat

SequenceFileAsBinarylnputFormat is a variant of SequenceFilelnputFormat that retrieves the
sequence file’s keys and values as opaque binary objects.

Multiple Inputs

The input to a MapReduce job may consist of multiple input files. This case is handled
elegantly by using the Multiplelnputs class. For example, if we had weather data from the
UK Met Office6 that we wanted to combine with the NCDC data for our maximum
temperature analysis, then we might set up the input as follows:

10

Multiplelnputs.addInputPath(job, ncdclnputPath, TextInputFormat.class,
MaxTemperatureMapper.class);

Multiplelnputs.addInputPath(job, metOfficelnputPath, TextlnputFormat.class,
MetOfficeMaxTemperatureMapper.class);

Database Input

DBInputFormat is an input format for reading data from a relational database, using JDBC. It
is best used for loading relatively small datasets, perhaps for joining with larger datasets from
HDFS, using Multiplelnputs.

CombineFile
InputFormat<K, V>

TextInputFormat

«interfacen

InputFormat<K,V> gl Filelnputformat<K, V> < m KeyValueTextinputFormat @ StreamInputFormat

org.apache.hadoop.mapred

NLinelnputFormat

SequenceFile
InputFormat<K, V>

SequencefileAsBinary
InputFormat

‘

SequenceFileAsText
InputFormat

«interfacen
Composable <3 -
Inputformat<K, V>

SequenceFile
Inputtilter<K, V>

CompositelnputFormat

<K, V>

s s s s Es s s ss s s sssEEsEE s s s s -

=
-

2 DBInputformat<T>

Empt
InputFormat<K,V>

Figure 7-2. InputFormat class hierarchy

11

Output Formats

TextOutputFormat<K, V>

cinterface» FileQutputFormat Sequencefile SequenceFileAsBinary

OutputFormat<K, V> &% <

org.apache.hadoop.mapred [<K, V>

OutputFormat<K, V> OutputFormat

MapFileQutputFormat

MultipleQutputFormat MultipleTextOutputFormat
<K, V> <K, V>

MultipleSequenceFile
OQutputFormat<K, V>

. NullOutputFormat
<K, V>

: DBOutputFormat<K, V>

FilterQutputFormat
<K\V>

< LazyOutputFormat<K, V>

Figure 7-4. OutputFormat class hierarchy

Text Output

The default output format, TextOutputFormat, writes records as lines of text. Its keys and
values may be of any type, since TextOutputFormat turns them to strings by calling toString()
on them. Each key-value pair is separated by a tab character. The counterpart to TextOutput
Format for reading in this case is KeyValueTextInputFormat.

Binary Output

SequenceFileOutputFormat As the name indicates, SequenceFileOutputFormat writes
sequence files for its output.

SequenceFileAsBinaryOutputFormat

SequenceFileAsBinaryOutputFormat is the counterpart to SequenceFileAsBinarylnput
Format, and it writes keys and values in raw binary format into a SequenceFile container.

MapFileOutputFormat

MapFileOutputFormat writes MapFiles as output. The keys in a MapFile must be added in
order, so you need to ensure that your reducers emit keys in sorted order.

12

Multiple Outputs

FileOutputFormat and its subclasses generate a set of files in the output directory. There is
one file per reducer, and files are named by the partition number: part-r-00000, partr-00001,
etc. There is sometimes a need to have more control over the naming of the files or to
produce multiple files per reducer. MapReduce comes with the MultipleOutputs class to
help you do this.

An example: Partitioning data Consider the problem of partitioning the weather dataset by
weather station. We would like to run a job whose output is a file per station, with each file
containing all the records for that station.

One way of doing this is to have a reducer for each weather station. To arrange this, we need
to do two things. First, write a partitioner that puts records from the same weather station into
the same partition. Second, set the number of reducers on the job to be the number of weather
stations. The partitioner would look like this:

public class StationPartitioner extends Partitioner<LongWritable, Text> {
private NcdcRecordParser parser = new NcdcRecordParser();

@Override

public int getPartition(LongWritable key, Text value, int numPartitions) {
parser.parse(value);

return getPartition(parser.getStationld());

¥
private int getPartition(String stationld) {

}.
}
Lazy Output

FileOutputFormat subclasses will create output (part-r-nnnnn) files, even if they are empty.
Some applications prefer that empty files not be created, which is where LazyOutputFormat
helps.

Database Output

The output formats for writing to relational databases and to HBase. DBOutputFormat,
which is useful for dumping job outputs (of modest size) into a database.

13

A partitioner works like a condition in processing an input dataset. The partition phase
takes place after the Map phase and before the Reduce phase.

The number of partitioners is equal to the number of reducers. That means a partitioner
will divide the data according to the number of reducers. Therefore, the data passed from a
single partitioner is processed by a single Reducer.

Partitioner

A partitioner partitions the key-value pairs of intermediate Map-outputs. It partitions the
data using a user-defined condition, which works like a hash function. The total number of
partitions is same as the number of Reducer tasks for the job. Let us take an example to
understand how the partitioner works.

The default partitioner is the hash partitioner.

Custom partitioner

name<tab>age<tab>gender<tab>score

Input

Alice<tab>23<tab>female<tab>45
Bob<tab>34<tab>male<tab>89
Chris<tab>67<tab>male<tab>97
Kristine<tab>38<tab>female<tab>53
Connor<tab>25<tab>male<tab>27
Daniel<tab>78<tab>male<tab>95
James<tab>34<tab>male<tab>79
Alex<tab>52<tab>male<tab>69
Nancy<tab>7<tab>female<tab>98
Adam<tab>9<tab>male<tab>37
Jacob<tab>7<tab>male<tab>23
Mary<tab>6<tab>female<tab>93
Clara<tab>87<tab>female<tab>72

Monica<tab>56<tab>female<tab>92

14

https://hadooptutorial.wikispaces.com/Custom+partitioner

PartitionMapper

PartitionMapper prepares the data for the partitioner and the reducer. It parses the input records and emits key-value pairs where the key is the gender and the value is t
information associated with a person.

=

[T T B S Y N R R

1

e
[FURN I

(=]

. //mapper output format : gender is the key, the value is formed by concatenating the name, age and t

score

,_.
W

o
oo LN

=
[Sop

information

LG

20.
21.

¥

// the type parameters are the input keys type, the input values type, the
// output keys type, the output values type

@Override
public static class PartitionMapper extends

Mapper<Object, Text, Text, Text> {

public void map(0Object key, Text wvalue, Context context)

throws IOException, InterruptedException {

String[] tokens = wvalue.toString().split("\t");

String gender = tokens[2].toString();
String nameAgeScore = tokens[8]+"\t"+tokens[1]+"\t"+tokens[3];

//the mapper emits key, value pair where the key is the gender and the value is the othe
which includes name, age and score
context.write(new Text(gender), new Text(nameAgeScore));

15

IS S T S PR T P R Y T T T N T o e e e S S e S SR S S

. //AgePartitioner is a custom Partitioner to partition the data according to age.

//The age is a part of the value from the input file.

//The data is partitioned based on the range of the age.

//In this example, there are 3 partitions, the first partition contains the information where the age is Less than 28

/#The second partition contains data with age ranging between 28 and 58 and the third partition contains data where the age is >58
public static class AgePartitioner extends Partitioner<Text, Text» {

o LN e e B

@override
public int getPartition(Text key, Text value, int numReduceTasks) {

String [] nameAgeScore = value.toString().split("\t");
String age = nameAgeScore[1];
int agelnt = Integer.parselnt(age);

//this is done to avoid performing mod with @
if(numReduceTasks == @)
return ©;

//if the age is <28, assign partition @
if(agelnt <=28){
return &;

/felse if the age is between 28 and 58, assign partition 1
if(agelInt >28 && agelnt <=58){

return 1 % numReduceTasks;
/fotherwise assign partition 2

else
return 2 % numReduceTasks;

=ofar B O D 00 0 o L0 W G PO O w00 0 o 00 W G B O w00

Partial sorting:

When a reducer receives those pairs they are sorted by key, so generally the output of a
reducer is also sorted by key. However, the outputs of different reducers are not ordered
between each other, so they cannot be concatenated or read sequentially in the correct
order.

For example with 2 reducers, sorting on simple Text keys, you can have
Reducer 1 output : (a,5), (d,6), (w,5)
Reducer 2 output : (b,2), (c,5), (e,7)

The keys are only sorted if you look at each output individually, but if you read one after the

other, the ordering is broken.

Total Sort:

The objective of Total Order Sortingis to have all outputs sorted across all reducers :
Reducer 1 output : (a,5), (b,2), (c,5)
Reducer 2 output : (d,6), (e,7), (w,5)

This way the outputs can be read/searched/concatenated sequentially as a single ordered

output.

Note: Use TotalOrderPartitioner to get global sorting.

16

Example:
public class TotalOrderPartitionerExample {

public static void main{5tring[] args) throws Exception {

/¢ Create job and parse CLI parameters
Job job = Job.getInstance(new Configuration(), "Total Order Sorting exd
job.setJarByClass(TotalOrderPartitionerExample. class);

Path inputPath = new Path(args[8]);
Path partitionQutputPath = new Pathl{args[1]);
Path outputPath = new Path{args[2]);

/¢ The following instructions should be executed before writing the pan
job . setNumReduceTasks(3);
FileInputFormat.setInputPaths(job, inputPath);
TotalOrderPartitioner.setPartitionFile(job.getConfiguration(), partitig
job.setInputFormatClass{KeyValueTextInputFormat.class);
job . setMapQutputKeyClass(Text . class);

[l bt [fmd ot | ok ok ok |l ok |k))
ERDQQ“*JG‘lUIJ‘-‘nLuNHEL"—"m“ﬂG‘lLﬂ-PLJNI—

/4 Write partition file with random sampler

21 Inputsampler_ Sampler<Text, Text= sampler = new InputSampler. RandomSampl
22 InputSampler writePartitionFile(job, sampler);

23

24 £ UUse TotalOrderPartitioner and defoult identity mapper and reducer
25 job.setPartitionerClass{TotalOrderPartitioner.claoss);

26 job . setMapperClass(Mapper.class);

27 job.=setReducerClass{Reducer.class);

28

29 FileQutputFormat . setOutputPath(job, ocutputPath};

30 System.exit(Jjob. waitForCompletion(true) 7 @ :© 1);

31 1

32 1

Map side and Reduce side joins :

\Ylee Reduce

Side Side

Fast, but has lofs Flexible, but a
of constrains. little slower.

Map Side Join:

17

Hrs Prii# Project Details Emp. Details

Billed

PRJOOI, 88158, 100, 50 PRJOO1, Big Data Prj, 100000 PRJOO1, Big Data POC, 100000, 88158, 100, 50
PRJOO1, 77157, 70,75 PRJ002, Hadoop POC, 50000 PRJOO1, Big Data POC, 100000, 77157, 70,75

PRJ002, 66156, 70, 50 PRJ002, Hadoop POC, 50000, 66156, 70, 50

, S
PRJO02, 66156, 90, 50 il e Budoet PRJ002, Hadoop POC, 50000, 66156, 90, 50

Prj# Emp# Rate

LA PRJ0O1, Big Data Prj, 100000 §

D
PRJOO1, Big Data POC, 100000, 88158

PRJOOT1, 88158, 100, 50 PRJ0O1, Big Data POC, 100000, 77157,
PRJOO1, 77157, 70,75

PRJ002, Hadoop POC, 5000 g
2 g PRJ002, Hadoop POC, 50000, 66156,

PRJ002, 66156, 70, 50 PRJ002, Hadoop POC, 50000, 66156,
PRJ002, 66156, 90, 50 ’

1. Sorted By the same key. 3. All the records of the same key should be in the

2. Equal number of partitions same partition.

Reduce Side Join:

Hrs Pri# Project Details Emp. Details

Billed

PRJOO1, 88158, 100, 50 PRJOO1, Big Data Prj, 100000 PRJOOI, Big Data POC, 100000, 88158, 100, 50
PRJOO1, 77157, 70,75 PRJ002, Hadoop POC, 50000 PRJOOI, Big Data POC, 100000, 77157, 70,75
PRJ002, 66156, 70, 50 PRJ002, Hadoop POC, 50000, 66156, 70, 50

. o
PRJ002, 66156, 90, 50 bk LT Aucgor PRJ002, Hadoop POC, 50000, 66156, 90, 50

Prj# Emp# Rate Composite Value
$/hr Koy

PRJOO1, 88158, 100, 50 _ PRJOOT, 1, <record> PRJOO1, 0, <record>

Custom

PRJ002, 66156, 90, 50 PRJO02, 1, <record> ”“"":.me’ f

-
BME PR 1002, 0, <record> :
PRJ0O1, Big Data Prj, 100000 PRJOO1, 0, <record> PRJ002, 1, <record> Reducer

PRJ002, Hadoop POC, 50000 PRJ002, 0, <record> PRJ002, 1, <record>

PRJOO1, 77157, 70,75 PRJOOI1, 1, <record> PRJOO1, 1, <record>
PRJO02, 66156, 70, 50 PRJ002, 1, <record> » PRJOOI, 1, <record>

Technicol As pecfs-> Multiplelnputs.addinputPath(<job>, <Path>, <InputFormat.class>, <TaggingMapper.class>);

18

Secondary Sort :

A secondary sort problem relates to sorting values associated with a key in the reduce phase.
Sometimes, it is called value-to-key conversion. The secondary sorting technique will enable us to
sort the values (in ascending or descending order) passed to each reducer.

A dump of the temperature data might look something like the following (columns are year, month,
day, and daily temperature, respectively):

2012, 01, 01,5
2012, 01, 02, 45
Logical (Key, Value) Pair
< P
K1: yearMonth K2: temperature day
Natural Key Natural Value

| ["
Composite Key

) "

Figure 1-1. Secondary sorting keys

2000, 12,04, 10 ((2000-12, 10), 10)

2000, 11,01, 20 ((2000-11, 20), 20)

2000,12,02,-20 —————{ map() ((2000-12, -20), -20) —{ partition()
2000, 11,07, 30 ((2000-11, 30), 30)

2000, 11, 24, -40 ((2000-11, -40), -40)

((2000-12,10), 10)

((2000-11, 20), 20)
(2000—1 2), [10,-20] gmupo e ;
comparator() ((2000-12,-20), -20)

(2000-11, [30, 20, -40] reduce()

((2000-11, 30), 30)
((2000-11,-40), -40)

Secondary sorting data flow

The mappers create (K,V) pairs, where K is a composite key
of (year,month,temperature) and V is temperature. The (year,month) part of the composite key is
the natural key. The partitioner plug-in class enables us to send all natural keys to the same reducer

19

and the grouping comparator plug-in class enables temperatures to arrive sorted at reducers. The
Secondary Sort design pattern uses MapReduce’s framework for sorting the reducers’ values rather
than collecting them all and then sorting them in memory. The Secondary Sort design pattern
enables us to “scale out” no matter how many reducer values we want to sort.

20

