IO EIC 3, HSURISTIC SEARCH TICHINIL U D

1 |
3.1 Generate-and-'Test.

The generatc-and-test & | :
: o uc.nml teststrategy inthe simplest of nll the upproaches we discuss, Itconsists
of the following, nleps:

“Algorilhm: Generate-and-Test ('11’" (’“ I"iy(',,"i'- S ”’V)

L @1101'1110 a_possible solytion, _!'?‘,U;z‘.i‘,!!”"f problems, this means penerating a par-
. P ¥] [. = - r 7 ”
ticular point in h&roblem spalo.. For others, it méaii penerating a path from 3 _
\ .S!url statey
g '] ¥ i ’ .
2. Test 1o see if thig s actually a solution by comparing ‘the chosen point or the
~endpoint of the chosen path 1o the net of acceptable goal states.

R ———

-—

e}

If the generation of possible solutions is done systematically, then this procedure.
will find a solution eventually, if one cxists, wlyM;l_U_'l“"'-]V.ijl)@ problem space ig.yery.
large, “eventually” may be a very long time.

— fljig_'g(_;j)gr_n_l}_:;im “test_algorithunis_a_depth-first_scarch _procsdur ; singe. complete

3. If a solution has been found, quit. Otherwise, return to step l"

solutions must be i'_g.mff\ffd?bféfﬁi"c?‘llxﬁyfﬁﬁf[v'wﬁi its most systematic form, it is
STmply an cxhaustive search of e problem space, Generate-and-1est can, of course, also
operate by generating solutions randomly, but then there is no guarantee that a solution
‘will ever be found. In this form, it is also known as the British M useurp..algorithm,
a 0 1 f he an obiect in-the. British Museum-by-wandering

” "

a reference to a method for finding an_objee

randomly.! . Between thesc two extremes lics a practical middle ground in which the
search process proceeds systematically, but some paths are not considered because they
seem unlikely to lead to a solution. This evaluation is performed by a heuristic function,
as described in Section 2.2.2.

>he most straightforward way 1o implement systematic_penerate-and-test is as a

depth-first scarch lﬂ;@_yﬁ‘i_“ﬂl_lmcktmcki%' If some intermediate states are likely to
“appear ofen in the tree, however, itmay be better to modify that procedure, as described
above; to traverse a graph rather than a tree.

A F(’Lﬁii'lf,’,lf.ﬂﬂo,b_lﬁﬂfi exhaustive generate-and-test is often a reasonable technique.

For example, consider the puzzlc that consists.of four six-sided cubes, with each side of
e st v v I - e s St S)1 S R 8 po——_ T D R e oD B
cach cube painted one of four co}

ited ¢ ms A solution to the puzzle consists of 4n drrangement
of the cubes in a row such that on all four sides of the row one block face of cach coloris
showing. This problem can be solved by a person (who is a much slower processor for
this sort of thing than even a very cheap computer) in several minutes by systematically
and exhaustively trying all possibilitics. It can be solved even gore quickly using a
heuristic’ generate-and-test procedure. A quick glance at the four blocks reveals that
there are more, say, red faces than there are of other colors. Thus when placing a block
with several red faces, it would be a good idea to use as few of them as possible as
outside faces. As many of them as possible should be placed to abut the next block.
‘Using this heuristic, many.configurations need never be explored and a solution can be
found quite quickly.

I Or, as another story goes, if a sulficicot number of monkeys were placed in front of a set of typewriters
and left alone long enough, then they would eventually produce all of the works of Shakespeare.

Scanned by CamScanner

A

65

5”7@3\ ¢ CRAn [

3.2. HILL CLIMBING

q

Unfortunately, for problems much harder than this, even heuristic generate-and-test,
all by itself, is not a very effective technique. But when combined with othertechniques
to restrict the space in which lo search even further, the technique can be very effective.
For example, one early example of a su¢cessful Al program is DENDRAL [Lindsay
et al., 1980], which infers the structure ofifgggjc gompoaunasTx'ang mass spectrogram
and nuclear magnetic resonance (NMR) data. It uses-astralggy called plan-generate-test,
“in which a planning process that uses Constraini-satisfaction techniques (see Section 3.5

creates lists of recommended and contraindicated substructurcs, The gencraic-anid-Test
a fairly limited set of structures.

procedure thenuses thosel {81560 UiAr it Can explore only
Constrained in this.way, the gencrate-and-test procedure has proved highly effective. .
“FThis combination of planning, using. one problem-solving method (in this case,
corfsiraiitsatistaction) with the use of the plan by another problem-solving method,
generate-and-test, 18 an excellent example of the way techniques can be combined 10~

Tyt cach possesses individually”A major weakness of planning

L"i?k""l‘li?it”i F?illéiijﬁud uces somewhat Inaccurate solutigvr_ld.fsﬂ.rlcc‘tl}gg jsnofocdbacy __ff,?'f’
the world, But by using it 6nly (o prodiice pieces ‘of solutionshat will then bé explgited
in the 'gcncralc-und-tcsl process, the lack of detailed accuracy becomes unimportant.
And, at the same time, the combinatorial problems that arise in simple generate-and-test

/

.

are avoided by judicious reference to the plans.

Scanned by CamScanner

3.2 Hill Chmbmg/g Reed howf e'Ywm e o4 P’Cle(

Hill climbing is a-variant of generate-and-test in which feedback
1s used to help the generator decide which directi

mgurwate ar}d test procedure, the test. _functio

from the test_pmcedue
on to move in the search spa 43.6 Ina

e e v e .

n responds with only a yes or no. But

K istic function? that provides an esiimate

solution is being performicd{Hil climbing fs often used when a good heariic funitioy
1‘s avallable for evaluatmg statﬂut when no other usgfgl_l(%lwge is avallablej For
: example SUppose you are in an unfamiliar city without a'map and you want to to'get
‘downtown. You simply aim for the tall buildings. The heurlstxc function is just distance
between the current location and the location of the tall bUlldIﬂ"S and the desirable states

are those in which this distance is minimized:

Recall from Section 2.3.4 that one way to characterlze problems 1s according to thexr
answer to the question, “Is a good solutnon absolute or relauve"” Absolute soluuons

exist whenever it is possible to recognize:a goal state just'by examining it. Getting .
ddwntown 1s.an example.of such a problem. For these problems, hill climbing ¢

terminate whenever a goal state is reached.”Only relative solutions. exist, however, for
max1mxzauon (or mmlmlzatnon) problems, ‘“s'uch as the traveling salesman problem. In

these problems there is no a prioii goal stdte “For problems of fhis s sort, it'makesSsense
to terminate hill climbing when there is no reasonable alternative state to move to.

2What we are calling the heuristic function is sometimes also called the objective function, particularly in
the literature of mathematical optimization. 4

Loe

Scanned by CamScanner

66 - CHAPTER 3. HEURISTIC SEARCH TECHNIQOUES

3.2.1 Simple Hill Climbing

The simplest way to jmplement hill climbing 1s as follows.

,:/Klgorlthm. Simple Hill Cl‘mbmg

1. Evaluate the initial state. Ifitis also a goal state, then return it and quit. Otherwise,

continue with th¢ initial state as the current state.

2. Loopuntila solution is found or untii there are no new operators left to be applied
in the current staté:

(a) Selectan o‘p‘erator that has not yet been applied to the current state and apply

U’ Evaluate the new state.
Ifx 'is a goal state, then return it and quit.
llfIf it - js not 2 goal state but it is better than the curgent state, then make it
the CuxTent state.

"}, If it is not better than the current state, then continue in the loop.

The key dl*rerence between this algorithm and the one we gave for generate-and--

test is the use of an evaluation function as a way to inject task-specific knowledge
* into the control procesS: It is the use of such knowledge that makes this and the
other methods discussed in the rest of this chapter heuristic search methods, and it is

" that same knowledge that gives these methods their power to solve some otherwise

intractable problems.
~ Motice that in this
state he hetter than anath®

be prov1ded In some £
4l><=="’"“ eans a lower—Tva ve. I It does not matter which, as long as a particular hlll-.,hmb n,,

5nrogran"} =g cons;;;.é?lrt in its interpretation. '“’“‘;; —
"~ Tosee How hill cJimbing works, let’s retumn to the puzzle of the W
To solve the problemt. W€ first need to define a heuristic function that describes how
close a particular Conﬁnura'lon is to being a solution. One such function is simply the
sum of the number of different colors on each of the four sides. A solution tc the puzzie
wxll have a value of 16. Next we need to define a set of rules that describe ways of
transforrnlno one configuration into another. Actually, one rule wx'l suffice. It says
~ simply pick 2 ‘block and rotate it 90 degrees in any direction. Havmg provided these
definitions, the next step is to generate a starting configuration. This can either be done
ot random or with the aid of the heuristic function described in the jast section. Now
hill chmbmg cari beol" We generate a new state by selecting a block and rotating it. If

the resulting state is beHer then we keep it. If not, we return to the previous state and

try a different pe:rturbiiﬁon

algorithm, we have asked the relatively vague question, “Is one
22 For the algorithm to, WOMmngeﬁmnmmu”va)
ases,.it means_a higher value of the heuristic function. In ozhﬁrs

322 Steepest-Ascent Hill Climbing
imple hill climbing considers all the moves frem the current st

A useful variationon S .
and selects fhe—b'e'gl/ﬂe as the next state This -nctl}od is called szeepesr-ascenr hill

4

Scanned by CamScanner

T I CLIMBING 67

iemnime or erodient search. Notice that this contrasts with the basic method in which

- - e N SV e

Tz Sre siae thal it hetier then the current state is selected. The algorithm works as

DA Drd b daie 4 8 -

S,

3leorithm: Steepest-Ascent Hill Climbing L Succ)

U easdeism

l

N2 imitizl state. 1fitis 2lso a goal state, then return it and quit. Otherwise, |

1_4 da cssdad

= wath the imitial state as the current state.

l

2) Lezz SUCC be a state such that any X possible successor of the current state
':s.:ZTE’f: petter than SUCC.
b) Foreach t*'v-'"::c. that applies to the current state do:

i. Apply the operator and generate a new state. ‘
Taalpzte the new state. If it is a goal state, then return it and quit. If
pare i1 10 SUCC. I itis better, then set SUCC 1o this state. If

s ic not benter, leave SUCC alone.

. 17ha SUCC is better than current state, then set current state to SuUcCcC.

0

T 2 ~=nact.zec2nt hill climbing to the colored blocks__proble we must

- —
- .

iC <
g

concider 21l perturbations of the initial state and choose - the_hest. For this problcm “this

= e <imoa thare 2re SO many possible moves. There is a trade-off between the

el lilewss Slesei

reguired 10 select 2 moOve (usually longer for steepest-ascent hill climbing) and the
~savired to get 10 a solution (usually longer for basic hill climbing)

I ol TR
T BB s Teg

LA Ud seha T R
- s red when deciding which method will work better for a particular

e -

L
[
'

i em —— T -‘,; :-\—(
‘ ~ -~

e and_ v-v-;_\tﬁ .accent hill climbing may_fail to_find a_solution. Either
by finding a goal state but by getting to a state from which
ated. This will happen if the program has rcachcd either a

2 .;..-.. ™ - —
¥ ::T‘.'. . Y TR ¢ not

= I e

) mavimum, 2 plat c.'..m::ndﬂc

g

o0 hetlsT e &EN b oeneTa
- :

- -

OCa I axim

marimur iS 2 state that is better than all its neighbors but is not
ther states farther away. At a local maxlmumm

-\500»' -Lq—q come oher s

----- s . —

than some O —
“mmear to make (hings worse. Local maxima are pamcularly frustralmg

———
L

— i

Tescacce they often occur 2imost within sight of a solution. In this case,

'ﬁn‘! 'ﬁ"““n”(‘

thevarcca

A plorea is a fiat - area of the search space in which a whole set of neighbor-

A platean 537
me saes have the same valve ‘On a plateau, it is not possible to determine
~he hew direction in which to move by making local comparisons.

b'\.t-l;.l

—

i T e e et
s ridee isa special kind of Jocal maximum. Itis an area of the search space
~r than surrounding areas and thatitself has.a slope (which one

-Lc.‘:'.': iS ax é:xos

would like 10 dzmb\- But the orientation of the high region, compared to

the set of available moves and the dm-cnons in which they move, makes it
L]

Scanned by CamScanner

68
CHAPTER 3. MEURISTIC SEARC HTHC ‘IINI()UI'..\

There ;
are some ways
of dealing
Mo means guars d aling with these problems, although these me ,
guaranteed: ' ugh these methods are by

e Bac e
acktrack 1o some earlier node and try g
particularly rexsoasblotr y going in a different direction. This s
promising o slmon c .ul llyul node there was another direction that looked as
il g i St as prgmmng as the one that was chosen earlier. Toimplement
b aih um. w:slr:‘l;(m dlhs(; of paths almost taken and go back to one of them if
akcen leads to a dead end. This s a f:
. 51 ‘ 2
ith local magies 15 a fairly pood way of dealing

e Make a big j i irect
e %‘g Jump in some direction 1o try to get 1o a new section of the scarch
; 1 artj
P ;lls a Dd‘rtxcu.larly good way of dealing with platcaus. If the only
. available describe single small steps, apply them several times in the same
direction.

e Apply tw.o or more rules before doing the test. This corresponds to moving in
several directions at once. This is a particularly good strategy for dealing with

ridges.

| Even with these first-aid measures, hill climbing is not always very effective. It
is particularly unsuited to problems where the value of the heuristic function drops off
suddenly as you move away from a solution. This is often the case whenever any sort
of threshold effect is present. Hill climbing is a local method, by which we mean that it
decides what to do next by looking only at the “immediate™ consequences of its choice
rather than by exhaustively exploring all the consequences. It shares with other local
methods. such as the nearest neighbor heuristic described in Section 2.2.2, the advantage
ally explosive than comparable global methods. But it also
ds a lack of a guarantee that it will be effective. Although
oks only one move ahead and not any

of being less combinatori

shares with other local metho

it is true that the hill-climbing procedure itself lo
may in fact exploit an arbitrary amount of global information if

he heuristic function. Consider the blocks world problem
operators (i.c., pick up one block and put iton

farther, that examination
that information is encoded int

shown in Figure 3.1. Assumc the same
the table; pick up onc block and put it on another one) that were used 1n Section 2.3.1.

Suppose we use the fo
block that is resting on the thing it is

Local: Add one point for every
supposed 1o be resting on. Subtract one point for every block that is sitting

on the wrong thing.

llowing heuristic function:

a score of 8. The initial state has a score of 4

(li;'r',':;f ilthgl;iu:::;:gi.nlth:ddcd forblocks C,D,E, F, O a.nd H and one point subtractu‘i for

t;I()CkS A and B). There is only one move from the umm! state, namcvly to move !Jl()(.k A
. to the table. That produces a stale with a scorc'of 6’(sm_cc now A’s pog,l'“(,"‘,:.«,u,‘c:'d

point to be added rather than subtracted). The hfll-cllmbmg proc.cdurc will acccpf l uF
b move. From the new state, there are three possible moves, leading to lhcf 'l:l”cf s(t;.(:u:

shown in Figure 3.2. These states have the scores: (a) 4, (b) 4, and () 4. H’;" c me:\%
“will halt because all these states have lower scores than mc current state. l llc p_ru‘h;[

has reached a local maximum that is not the global maximum. The ;Trc))lcrtx:cl;mcr
*by purely local examination of sypport structures, the current state appears to

goal state has

b
Scanned by CamScanner

3.2. HILL CLIMBING

A H
H G
G F
F E
E D
D C
L BE
B A
initial state goal state

Figure 3.1: A‘Hill-Climbing Problem

A

H

G G G
F F E
E E E
D D) D
C H C t C
B Al |B Al [H| |B

(a) (h) (c) v

Figure 3.2: Three Possible Moves

-
< -

than any of its successors because more blocks rest on the correct objects. To solve tais
problem, it is necessary to disassemble a good local structure (the stack B through H
because it is in the wrong global context.

We could blame hill climbing itself for this failure to look far enough zhezad 10 find
a solution. But we could also blame the heuristic function and try to modify it. Supposc

we try the following heuristic function in place of the first one:

Global: For each block that has the correct support structure (i.e.. the
complete structure underneath it is exactly as it should be). add one poirt
for every block in the support structure. For each block that has an incomec

support structure, subtract one point for every block in the existing supporT

structure.

Using this function, the goal state has the score 28 (1 for B, 2 for C, etc.). The mitia :
has the score —28. Moving A to the table yields a state with a score of —21 since A <

Scanned by CamScanner

R A R URISTIC SEARCH 110 TINIOLLY
longer l|:|§ seven wrong blocks under it, ‘The 1)ree stistes that con tye |

have the following scores: (a) ~28, (h) 16, and (¢) 14 o oo Next now
hill climbing will choose move (), which is the corre |
captures the two key aspects of this problem;
be taken apart; and correct structures are pood

Fhis time, BleCpest- aacent
crone, "This new hearisti finction
INCOTECt structures are bad ane should

and should be buil up. As i
— T : . . , ‘ At result, the
same hill climbing procedure that failed with the earlier heuristic fun

pcrl‘cctly. Mon now works,

Unfortunately, itis not always possible to construct such a perfect heuristi function,
For c.xnmplc. consider again the problem of driving downtown. The perfect heuristic
tunction would need to have knowledge about one way and dead-end streets, which. in
the case of a strange city, is not always available, And even if perfect ;'Ill)Wlltl,}’C'i'-,
in principle, available, it may not be computitionally tractable to use, Ay an r.r.!r'r,ma
example, imagine a heuristic function that computes a value for a state by invoking iis
own problem-solving procedure to look ahead fromthe state it is pivento find a solution,
It then Knows the exact cost of finding that solution and can returs that cost as it vilue,
A heuristic function that does this converts the Jocal hill-climbing procedure into a
global method by embedding a global method within it, But now the computational
advantages of a local method have been lost. Thus it is sti)l true that hill climbing can be
very inefficient in a large, rough problem space. But it is often useful when combined
with other methods that get it started in the right general neighborhood.

[" k
e Crep el s I

3.2.3 Simulated Annealing (/! ”/) 7 A

*Simulatcd annealing is a Variation of hill climbing in which, at the beginning of the

\

':R'roccss, some downhill nlgxg;;g_ﬂiéy;hq,mndp. The idca is to do enough exploration of

vy

the whole space early on so that the final selution is relatively insensitive to the starting
state. This should lower the chances of getting caught at a local maximum, a plateau,

or a ridge. o | N |
In order to be compatible with standard usage in discussions of simulated annealing,

we make two notational ¢hanges for the duration of this section?We use the term
objective functionin-placeof Athc-lcrmjwuri.wir_. jufu‘lum. | o
"~ Andwe ill.lcmmIQ.IJ.?f.’l".!”_{',Zf’f‘!_'_l?f‘{Fhfﬂl maximize ll')c, yalueof the ()b‘,;(.:ct:‘vc ,'un(,'xmn,
' Th“ﬂsr we actually ‘d,fﬁ@!iiLJ,Q.é‘..R[".)F,ﬂ?SS.S).f.Villlcy descending rzllllgr than hill chfnhmy,.
'''' S'i'ihmlﬁ':l.féa—;'r;ﬁculing [Kirk puﬁt_r»irv_;_k‘('_l‘ al., 19831 as a «.:mnpm:munul process is purltcnfcd
- after the physicEITv|-dt_:;'.-;f_pf_qugr'a/j!I.&’. in which physical substances such u.u‘ Tuil"']!?["::i
tielied (i.c., raised to high cnergy levels) and then ;r,mdtfu!ly cooled until :m.mc. .,";ll’_(” i.,
is reached. The goal of {his process is to produce a minimal-cnergy final atate, ..."U;Z W:."
"'pi'océ‘s.é is one of vatley descending in wh‘it.'h the nhjgc’thﬁ lunchm w '!,;;'v,],‘.l,{',l,},’,'(‘g_ ”
~Physical substances usually move from higher c:n’m;v,y cunff'g;s;:;l]:l'{_){],_,'l:‘rlyﬂ .:‘:/,'.v,,,. ,,,',,;,’,'(
the valley deséending occurs natarally? But there s some pro a’,n ‘n_n;”{mn(.m. an
a higherenergy state will'occur. This probability is given by the fune
p=e AL

e

T + temperature, and
, T is the temperature, 4

scending, that occurs during
an t : a smil

where A £ is the positive change in the encigy lcvcl’
| ann’s 3¥; 15, in the physical valley de o
el il tl:'»"~-"] i lower than the ’..’.,rf,’";:ulnhl)’ui

aanealing. the probability ofaJargeuphi/Lmaye 15
. e " ,

Scanned by CamScanner

DC//’: *(U\d\\. Y

o

3.2. HILL CLIMBING & | 71

L Also, the probability that an uphill move will be made decreases as the temperature

decreases. Thus such moves are mor likely duri e o tein :
— R ‘ e likely during the beginning of the process when the
lemperature is high, and they become less likely at the end as the temperature becomes
lower. One way to char_acterize this process 1s that downhill moves are allowed anytime.
Large upward moves may 0ccur early ofi, but as the process progresses, only relatively
small upward moves ar¢ allowed until finally the process cOnverges tg-a Jocal minimum
corifiguration. - _
/The rate at which the system is cooled is called the annealing schedule. Physical

Mgﬂeﬁes ar¢ very sensitive to the annealing schedule. If cooling occurs 100

r_ﬁpid‘y’ stable_q:gions Of'bjgb__t;@ﬁﬁi"ﬂ)’ﬁh—: In other words, 2 local but not global
a s dule is used, a uniform crystalline

likely to develop. But, if the -

where essentially random

"mi_'nimu"rif-ig?eacﬁédi."'i-f, however, a slower sche
structure, which conespohds toa global'minimum, is more
schedule is too slow, time is wasted. At high temperatures,

" motion is allowed, nothing useful happens. At low temperatures a lot of time may be
wasted after the final structure has already been formed. The optimal annealing schedule
for each particular annealing problem must usually be discovered empirically.

These | properties of physical annealing can be used to define an analogous process

_o.f Srimulzfted z.mne:ali_gg, which can be used (although not always effectively) whenever
simple hill climbing ‘can be fised. In this analogous processﬁE is generalized sO that
P Y . 3 o - -
it represents not specifically the change In energy but more genera Iy, the change 1t
‘i value of the objective Tupclian. whatever s, oS00 L0 analogy forKLiS sightly 1ess
s;yg_ightfonvard. In the physical process, temperature is a well-defined notion, measured
in standard units.” The variable k describes the correspondence between. the units of
s e

temp ;mlunwnd—&emni&&@i:@%ﬂ%nce, in the analofg?ous process, the units for

both £.and T are artificial, it makes sense to incorporate & 1fto T, selecting values for

T that preduce desirable behavior on the part of the algorithm. Thus we use the revised

probabilit ‘_f_o_f;_m_l‘ll-g’.-, ' D C,’ - Cj:/\av\?{_ A7 \vaj--u c,_-
& \jl ~ GJ Q) ;

p = o~ DEIT Cod T e Ae

But we stillneed to choose aschedule of valu-es for T (whichwe still call temperature).

We discuss this briefly below after we present the simulated annealing algorithm.
's only_slightly different from the_simple

The algorithm for simulated annealing
hﬂ1-'33imbingﬂggéd_um-_ﬂw.thmﬁ.diffmes_am;_,— '
« The annealing schedule must be naaintained./

o worse states may be accepted. v

e Movest

e Itisa gbod idea to maintain, in addition to the cdrrent state, the best state found
so far. Then,.if the final state is worse than that earlier state (because of bad luck"
in accepting moves to worse states), the earlier state‘iiitill available.

»/Algorithm: Simulatéd Annealing

1. Evaluatethe initial state. Ifitis also a goal state, then return it and quit. Otherwise

continue with the init
5 Initialize BEST-SO-FAR to the current St
Scanned by CamScanner

ial state as the current state.

(ﬁH 2) -~ Y1 O
APTER 3. HE URISTIC SEARCH TECHNIQUES

4. Loop unti] 3 solutio

. n iS fOund orunn Are arp y
in the curren; M nul there are no new operators left 1o be applied

(a) Select an operator that has no
1110 produce a new state.

(b) Evaluate the new

tyet been applied to the current state and apply

state. Compute

AE = (value of current) — {value of new state)

® ' ' [
If the new state is a goal state, then return it and quit.

e Ifiitis not a goal state but is better than the current state, then make it
the current state. Also set BEST-SO-FAR to this new state.

» If.il 1s not better than the current state, then make it the current state
with probability p’ as defined above. This step is usually implemented
by invoking a random number genﬂg’tgr to produce a number 'i,n_-lhs:f
range [0,1]. If that number is less than p’, then the move is accepted.
OthcrwiEgL do nothing. A

——

(c) Revise T as necessary according to the annealing schedule.

!

S. Returmn BEST- -SO-FAR .as the answer.

To implement this revised algorilhm, it is necessary to select aiz annealing schedule,

which has three components ZFhe first is the initial value 10 be used for temperature.
The i iteriathatwill be used to decide when the temperature

should be reduced—TFhe third is the amount by which the temperature will b¢7°d5°°d
each time it is changed. There may also be a fourth component of the schedule, namely,
Wﬁ&ﬁ;m&ﬁﬂgimmm used to solve problems in which the number.
iy iven state_is very_large (such as the number of permutations that
can be made to a proposed traveling salesmal.l route). For such probl'cms, it may not
make sense to try all possible moves. Instead, it may l?e usefu_l to cxplo:; some criteriorl
involving the number of moves that have been tried since an improvement was found.
Experimeﬂls that have been done with snmul.aled anncalmg_ ona var{ety of problems
est that the best way to select .an annealing schedule is by trying several and
SUEES> he effect on both the quality of the solution that is found and the rate at
observing the € To begin to get a feel for how to come up with a schedule,

. converges. cqe :
which the process rg T approaches zero, the probability of accepting a

_ ing to notice is that as _ : : .
the first thing d simulated annealing becomes identical to simple

bility of accepting a move is the ratio A E/T. Thus jt is important that values f)”_
gZObZl:zd zo that this ratio is meaningful. For example, T could be initialized to a value -
sC :

an average A E, p’ would be 0.5. |
SUC‘}:::;;::) ;8 returns to simulated annealing in the context of neural networks.

)
of the system

Scanned by CamScanner

3.3. BEST-FIRST SEARCH W&‘\b
!

| 73
3.3 Best-First Search (0 g PromiCa ot ok
Until now, we have feallvmly.dtscusmdm mati
m&wmumegms,_.brsadth first

search_and dep
th-first search (of several _varieties). ‘In this section, we discuss a new

method, best-first search, which i
3 ZLORTAAIST SLAll sawa of C
and brea dth ﬁrst search mto . sfngle m}éthOdombmmg the advanta es of both d_e_pthfi_rst

33.1 OR Graphs\/ : ‘%% @

Depth-first search is good because it allows asolution nto be fougd without all competing

:)r;anchc;:s hz:ivmg to be expanded. Breadth-first search is good because it does not get -
pped on dead-end paths. One way of combining the two s to follow a single path at

g s ey e A e S ——

atime, but swuch paths whenever s
ome competing path looks ‘more promisi
current one does. * _ES : BEOMFing A (e

*'At each step of the best-first search process, we select the most promising of the

nodes we have generated so far. This is done by applying an appropriate heurlstlc

functron ntocach of them. We then expand the'chosen node by usmg the ruies to generate

addcd to the set of nodes generated so far Agam the most’ promlsmg node is selected
and ue what happens-is that a bit of depth-first searching

\
occurs as the most promising branch is explored. But eventually, if a solution is not

¥ e A

“found, that branch will start to look less promrsmg ‘than one of thetop-level branches that

had been 1gn0red At that point, the now more promising, previously ignored branch
~,-_—“-"“.

will be explored. But-the old branch is not forgotten., Its last node remains in the set of

T

W unexpanded nodes. The search can return to it whenever all the others get
bad enough that it is again the most promising path)

. Figure 3.3 shows the beglnnmg of a best-first search procedure Initially, there is -
only one node, so it will be expanded. Doing so generates three new nodes. The heuristic

function, which, in this example, is an estimate of the.cost of gettingtoa soluy_gp_{rgm a

grven node, is applied to each of these new.nodes. Since riode Dqs the most pr omising,
""""""""""""" ssor nodes E-and F. But then the heuristic"

producmg two succe V
Now “another path “that gomg ‘through nede B, looks more

promising, so- it is pursued, generatmg nodes Gran_d_H But again when these new nodes
are evaluated they look [ess promising than another path, so attention is returned to the .
path t through D to Ex E is then expanded, yielding nodes I and J. ‘At the next step, J will
be expanded smce 1t 1s the most promrsmg Thts process can contmue until a solutton '

—

it'is expanded next,
function is applled to them.,

is f_ound
Notice that this procedure

clrmbmg, with two exceptlons ‘
are are re ected never to. be recopsl

1S verwnplar to-the procedure for steepest-ascent-hill
nhill ¢ onemoveas-selectedand_an the others
idered. ThLS produces the straightline behavior that Is

est-first search, one move 1s selected, but the others

charactertstlc of htll chmbrng’ﬂn’_h_e_.s__t
are kept around So that they cmrs_rted Iater if"the_ selected path becomes less

W“”her - the best-available-stare. mjejs?&!?_dﬂm*besl -first search, even. if that
€

dte has z'_txat.ge _that,rs lower than the.value-of- the state that was just explored. This

3In a variation of best-first search, called beam search, only the n most promising states are kept for

future consideration. This procedure is more efficient with respect to memory but introduces the possibility

of missing a solution altogether by pruning the search tree too early.

Scanned by CamScanner

74 s CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

Stepl Step 2 Step 3
A A ' A

[B]® cloe) [Dlm Bl3 [Cle [D]

A

[El® [Fl©
Step 4 : o ...S/tep5
A ~ b
B : C|® D 57 B ;C—_(S)-: D i,
RoR - RER
Gl® [E (5)'_-' E | (m -:F »(6.) Gl [(5)E [E]®.

Figuré 3.3: A Best-First Search

~contrasts with ‘hill climbing, which will stop if there are no successor states with better

vzalues than the current state. s o0 _

" Although the example shown above illustrates a best-first search of a tree, it 1s.
sometimes important to _search a graph instead sc that duplicate paths will not be

' -p[;_féucd. (/An algorithm to de this will operate by searching a'fgir‘egtegl gra_p'n‘in which

cach node represerits a point in the problem space. Each nodewiil Contain, in addition

t6 a description of the probiem state it represents, an indication of how promising itis,a
parent link that ‘points back to the best node from which it came, and a list of the nodes

that were genera_ted from it. The parent link will make it possible to recover !%1(: pathto

" the goal once the goal is found. The list of successors will m-;ke'ig po;sxble, if a be_:tt_ef*

path is found to an zlready: existing node, to propagaie the‘:m’prcvcmem.down'to its
successors. We will call 2 graph of this sert an OR graph, since each of its branches
represents an zlternative problem-solving pati.., _ o e ke
To impiemeﬁt suca 2 ’graph4sear0h procedure, we will need to use twe Jists of nodes:

' OPEN—nodes that have been generated and hav e had-the heuristic function,

Scanned by CamScanner

\) sla
ggay‘ﬁ) wzfuﬂL
o " }oo‘
3 3. BEST-FIRST SEARFHA o rf*u,\nl‘ ke, . 7
A Kagh €7 T ,
applied to them but which have not yet been_examil examined ned (i.e., had their successors

generated). OPEN is actually a priority queue in Wthh the elements with the
hlgheSt_PﬂOf ity are those thhqt_h_eqmost promising value of the heuristic function.-

Standard techniques for manipulating priority queues can be used to manipulate
the list.

¢ CLOSED—nodes that have already been examined. We need to keep these nodes

e ———y o

in | memory 1f we want to_search a graph rather than a tree, since whenever a new -
node Is generated we need to check whether it has been’ 5e_nerated before.)"

T —— e e e
———— e o T .

We W1ll also need a heuristi¢' function ;hat estimates the merits of each node we
generate. This will enable the ""Iigdrjthm to search more promising paths first. _Call
thwf_(to indicate that.it iS an approximation to a function f that gives the true
evaluation of the ndde). For many applications, it is convenient to define this function
_as the sum of two components that we call g and #’. The function g is a measure of the

co_st of getting from the initial state to the current node, Note that g is not.an estimate

i of ‘anything; it 1s_gng_wn,to,be the exact_sum_of.the costs-of. applymg each of the.rules
" that were’ - applied along t_he_ best path to the node. The function /' is an estimate of . the
addmonal cost of getting from the current node to a goal state. This is the place where
knowledge about the problem domain is exploited. %he combined function f’, then,
represents anestimate_of the cost 0 f getting from the initial state to a goal state along
the path.that generated-the_current node. If more than one path generated the node, then
the algorithm will record the best one. Note that because g : and A’ must be added, it is
important that #" be a measure of the cost of getting’ ‘from the node to a solution (ie.,
good nodes get low values; bad nodes get high values) rather than a rheasure of the
gﬁodness of a node (i.e., good nodes get high values).- But that is easy to arrange with
judicious placement of minus signs. It is also importarit that g be nonnegative. If this is
not true, then paths that traverse cycles in the graph will appear to get better as they get
longer.

The actual operatlon of the algorithm is very simple. Tt proceeds in'steps, expandmg
one node at each step, until it generates a node that corresponds to a goal state. At each
step, it picks the most promising of the nodes that have so far-been generated but not
expanded. It generates the successors of the chosen node, appliés the heuristic function -
to them, and adds them to the list of open nodes, after checking to see if any of .them
have been generated before. By doing this check, we can guarantee that each node only
appears"vonc’e in the graph, although many nodes may point to it as-a successor. Then

the.next step begins.
Q‘his process can be summarized as follows.

Algorithm: Best-First:Search

1. Start with OPEN containing just the initial state.

~

Unnl a goal is found or there are no nodes left on OPEN do: y
/
(a) Pick the best node on OPEN. \\/

(b) Generate its SUCCESSOrs.
(c) For each successor do:
Scanned by CamScanner

76
c
HAPTER 3. HEURISTIC SEARCH TECHNIGQUES

H Cld ltS I)arent e - .,,-..-.bq.fore’ e dl o .l.q..‘,..-_, — : N

Cii. If it has beer por P : o

“better ?isi‘at?gff"gg“'@?‘“@‘-’~b9f,9f¢v change the parent ifihis new path is

This node o g brovious one. In that case, update the cast of getting to
> 10CE and 1o any successors that this node may already, have.")

The basic ide fore

a i . . .

graph traversal al ;) f'tt}llus algorithm is simp le. Unforturately, it is rarely the case that
siple to.'guara:meg rlh ms are simple to write cq;rCCtIy. And it is even rarer that it is
‘Bl ntee.the correctness of such algorithms. In the section tl{at- follows, we

graph’-search- program. - P g

N The A* Algorithm,/
T;hjic t(;est;ﬁrst -s.earc_:h algorithm that was just presented-is'a simplification of an algorithm °
Ch e A _.Iwhlch w-als ﬁfst Presented by Hart er al. [1968; 1972]. This algorithm uses”
the same f*, g, and &' functions, as well.as the'lists OPEN and CLOSED., that we have
already described. - e o ' ; a1 |

Algorithmi A%

1. {Start with OPEN ‘containin'g.only the initial node. Set:th'at.node’s g value to 0, its
/' value to whatever it is,.and its f’ value to &'+ 0, or /.. Set CLOSED to the

.

2. Until a goal node is found, repeat the following procedure: If there are no nodes, |
on OPEN, report failure}@h,erwisp, pick the node on OPEN with the Jowest f/
value. Call it BESTNODE. Remove it from OPEN. Place it on CLOSED. Seg jf |
BESTNODE is d goal node. If so, exit and report a solution (either BESTNODE
" all werwant ¥ TRE Tode of the patl that has been created between the inita
state and BESTNODE ifwe,aré: interested in the path). (wﬁw.
successors of BESTNODE but do not set BESTNODE Lo point to them yet. (First
we need o see if any of them have already been generated.) For each such
' SUCCESSOR, do the following: | |
(a) Set SU CCESSOR 10 P.?J_fltbaili.EOQEﬁ TNODE. éhééel b;'icl&'wa'rds links will
" make it possible to recover the path once a solution is found)
(b) Compute g(SUCCESSOR) = g(BESTNQDE) +. the cost of getting from

BESTNODE to SUCCESSOR.,~ o
(©) See if SUCCESSQR is the-same.as any.node 00.QPEN (i.g,.ithas.already.
~ Theen) Since. this

been generated but not processed). If so, call that node(OLR) Sin
node already exists in the raph, we-can throw SUCCESSOR away.and add.
OLD to the list of BESTNODE’s successors,[-Now we must decide whether

¢ reset to point to BESTNQDE. 1t should be if

\z ; OLD’s parent link should be resct.
e the path we have just found to SUCCESSOR is cheaper than the current best
o path to OLD (since SUCCESSOR and OLD are real ly the same node). So.see
her it s che ESSOR

s ‘ . .
whether it is cheaper to get to OLD via its current parpnt or‘toS({CC

Scanned by CamScanner

3.3. BEST-FIRST SEARCH .

via BESTNODE by comparing their g values. If QLD is cheaper (or just

as chf:ap), thfl_e_n.We need.do nothing. If SUCCESSOR is cheaper, then reset
OLD’s parent link to point to BESTNODE., record the new cheaper path in’

g(OLD), and update f'(OLD). o !
(d) If SUCCESSOR was noton OPEN, see if it is on CLOSED. If so, cali the
node on CLOSED OLD and add OLD to thé list of BESTNODE's successors.

" Check to see if the new path or the old path'is better just as in step 2(c),
and set the parent link-and g and f’ ‘values appropriately. ‘If we have just
found a b_g_t\ter path to OLD, we must propagate the improvement to OLD’s
successors, This is a bit tricky. OLD pointstoits successors. Each successor.
in turn points to its successors, and so forth, until-each branch terminates
with a node that either is still on OPEN or has no successors. So to propagate
the new cost downward, do a depth-first traversal of the tree starting at OLD,
changing each node’s g value (and thus also its f/ value), terminating each
branch when you reach either a node with no successors or a node to which’
an equivalent or better path has already been found.* This condition is easy
to check for. Each node’s parent link paints back to its best known parent.
As we propagate down to a node, see if its parent points to'the node we are
coming from. If so, continue the propagation. If not, then its g value already
reflects the better path of which it is pén. Sq»the?pr_opagation may stop here.
But it is possible that with the new value of g'being propagéted downward,
the path we are following may :become better than the path through the. -
current parent. So compare the two. If the path through the current parent
is still better, stop the propagation. If the path we are propagating through

; is now better, reset the parent and continue propagation. - - '-
(e) If SUCCESSOR was not already on either OPEN or CLOSED, then put
it on OPEN, and add it to the 1istof BESTNODE’s successors. ‘Compute -

-f’(SUC.C'ESSOR) = g(SUCCESSOR) + h' (SUCCESSOR). ' o

'S_e‘;/eiral iﬁ;eresti_n g _observatiohns can be made ébout thi:}.‘aljgorithm. The first concefnq
the role of the g function. It lets us choose which node:to-expand-next on the basis not
only of how good the node itself-looks (as measured by /'), butalso on the basis of how

good the path to the node was. ‘By incorporating g into f !, wewill not always choose as
our next.node to expand the node that appears to be closest to:the goal. This is useful if
we care about the-path.we:find. If, on the other hand, we only care about getting to a
solution somehow;-w.e_can define g always to be 0, thus always choosing the node that
seems closest to a goal..If we want to find a-path involving the fewest number of steps,
. then we set the cost of going from a node to its successor as a constant, usually 1. If, ..
on the gther hand,: we want to find the cheapest path.and some operators cost more than
others, then we set the cost of going from one node t'o-apother;5t0~reﬂect those costs, .

. :) . - .15/ .
Thus the A* algorithm can be used whether we. are interested \1‘_1_1,,ﬁ‘ndmg .z?ri]-mlm,al;cait _

overal] path or simply any path as | UiCk,l/_S,‘p_assiblg;.,tA - e L
stance of.a.node to the

The second observation'invo'lves K’ the estimafor,-of'h,,.the-di ,
goal. If i’ is.a perfect estimator of h, then A* will converge»;immedlate.l.)g,rtO. the goal -.

ihere"ire cycles in the‘{ graph. I
Il be no better than the first time

at the‘algorithm will tenﬁ_inatb'é'véh if

-4This second check guarantees th ven if’
a given node is visited, the path wi

there is a cycle, then the second time that
and so propagation will stop.

Scanned by CamScanner

78 o CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

, A

B| (3+1) Cl (4+1) D (5+1)

E| (3+2)

Fl (3+3)

Figure 3.4: /i’ Underestimates /1

with no search. The better /i’ is, the closer we will get to that direct approach. If, on
the other hand, the valueof A’ is-always.0, the search will be controlled by g. If the
valueof g is also 0, the search strategy will be random. If the value of g is always 1, the
search will be breadthi first. All nodes on one level will Fave lower g vatues, and thus
lower'~valuestiian will all nodes on the next level. What if, on the other hand, i"’is
neither perfect fior 07 Can we say anything interesting about'the behavior of the search?
The answer is yes if we caff guarantee that /' never '0verestiﬁ1ates h. In that case, the
A* algorithm is guaranteed to find an optimal (as determined by g) path to a'goal, if one
exists. This can easily be seen from a few examples.’ '

Consider the situation shown in Figure 3.4. Assume that the cost of all'arcs is 1.
Initially, all nodes except A are on OPEN (although the figure shows the situation two
steps latet, after B and E have been cxpanded). For.each node, f’ is indicated s the
sum of &’ and g. In this example, node B has the lowest f/, 4, so it is expanded first.
Suppose it has only one sticcessor E, which alsa appears to be three moves away.from
a goal. Now f'(E) is 5, the same as f'(C). Suppose we resolve this in favor of the
path we are curr_ently'fpllowing. Then we will expand E next,.. Suppose.it too has a
single successor F, also ;udged to be three moves: frcm a goal. We are clearly using up
moves and making no progress. But f'(F) = 6, which is greater than f'(C). So we will
expand C next. ':Thiis w'e_see that by underestimating #(B) we have wasted some effort.
But eventually we discover that B was farther away than we thought and we go back
and try another path. ' - . -

Now" consider the situation shown in Figure 3.5. Again we expand B on the first
step. On the second step we again expand E. At the next:step we expand F, and finally
we generate G, for a solution path of length 4. But suppose there is a direct path from D

“to a solution, giving 2 'path of length 2. We will never find it. By overestimating
K (D) we make D look so bad that we may find some. other,, worse solution without
ever expanding D. Tn general, if A’ might overestimate /i, we cannot be .guaramccd of
finding the cheapest path solution unless we expand the entire g.r'aph until all paths are

S A search ‘algorithn:i that iérgua.mnlccd to find an optimal path to a goal, if one exists, is called admissible
[Nilsson, 1980].

Scanned by CamScanner

7

3.3. BEST-FIRST SEARCH 79

B| G+1) [C] @+1) -[D].G5+1)

E | (Z2+2)

F| (1+3)

G| (0+4)

- Figure 3.5: ' Overestimates /-

longer than the best solution. An interesting question is, “Of what practical significance
is the theorem that if &’ never overestimates h then A* is admissible?” The answer is,

“a]most none,” because, for most real problems, the only way to guarantee that 4’ never
ove?‘esnmates h is to set it to zero. But then we are back to breadth-first search, which is
adm1531b1e but not efficient. But there is a corollary to this theorem that is very useful.

We can'’state it loosely as follows:

Gmcéful Decay of'Admissibilitv If k' rarely overestimates h by more
than &, then the A* algorithm will rarely find a solution whose cost is more
than & greater than the cost of the optlmal solution.

he formalization and proof of this cordllary will be left as an exefcise.
Thé third observation we can make about the A* algorithm has to do with the
relationship between trees 2nd graphs. The algorithm was stated in its most general
form as it applies to graphs. It can, of course, be sxmphﬁed to apply to trees by not _
bothering to check whether a new node is already on OPEN or CLOSED. This makes it
faster to generdte nodes but may result in the same search being conducted many times -
if nodes are often duplicated. .
Under certain conditions, the A* algorithm can bte shown to be optimal in that it
generates the fewest nodes irrthe process of finding a solution toa problem. Under other-
conditions it is not optimal. For formal discussions of these conditions, see Gelpenn

{1977] and Martelli [1977]. - |

3.3.3 Agendas
In our discussion of best-first search in OR graphs, we assumed that we could evalugtg
multiple paths to the same node independently of each other. For example, in the water |

Scanned by CamScanner

C‘ L .
HAPTER 3. yEURISTIC SEARCH TECHNIOU £

ed. This is not
. > N0 single, simple heuristic
a given node and a goal.

: task f: 4 “a i
written by Lenat [1977; 198] A::c:azygilec?athemams discovery program AM,

number theopy ; ‘ a small set of starting facts about
tncluded Sucgt:;:gass:; (j;t_)p(;zra(ors It could use to develop new ideas. These Operators
was 1o generate new "inter:::tinch'?i:g:;irszfu? "JO“CCPF e, T spec knovv"" AM,S gf”‘ﬂ
ical concepts. It succeeded in discovering

u.mbers and Goldbach’s conjecture,
its basic operators, AM would have been able to create a great
stof which would have been worthless. It needed a way to decide
ito apply. For this it was provided with a set of heuristic rules
The extreme cases of any concept are likely to be interesting.”
as the measure of merit of individual tasks that the system could
.era(ed by selecting at each’cycle the most interestin gtask, doing
Ing new tasks in the process. This corresponds to the selection
ode in the best-first search procedure. But in AM’s situation the

Consider, for example, the

fhany new concepts, mo
intelligently which rule
that said such things as
“Interest” was then used
perfom). The system op
i, and possibly generat
of the most promising n
fact that several paths r

why th.e task would lead to an interesting result. The more such reasons there are, the
more-likely it is that the task really would lead to-something good. So we need 2 way
to record proposed tasks along with the reasons they have been proposed. AM used a
task agenda. An agenda is a list of tasks a system could perfomm. Associated with each
task there are usually two things: a list of reasons why the task is being proposed (often

called justificctions) and a rating representing the overall weight of evidence suggestin g
that the task would be useful. '

An agenda-driven system uses the following procedure.

Algorithm: Agenda-Driven Search
I. Do until a goal state is reached or the agenda is empty:

(a) Choose the most promising task from the agenda. Notice that this task
can be represented in any desired form. It can be thought of as an explicit
statement of what to do next or simply as an indication of the next node to
be expanded. o

(b) Execute the task by devoting to it the number of resources detem_iﬁ/ed
by its importance. The important resources to consider are time and space.

For each of them, do the following:

i. See ifitis already on the agenda. If so, then see if this same reason for
doing it is already on its list of justifications. If so, ignore this current
evidence. If this justification was not already present, add it to the list.
If the task was not on the agenda, insert it.

ii. Compute the new task’s rating, combining the evidence from ail its
justifications. Not all justifications need have equal weight. It is often
useful to'associate with each justification a measure of how stiong a

7/

Scanned by CamScanner

ecommend the same task does matter. Each contributes a reason

B B e L

Wk R

W -

PR R Y S RO RO, S e R

B NS A b VNGOG .

3.3. BEST-FIRST SEARCH 81

reason it is. These measures

¢ then combined a this step to prod
an overall rating for the task. ; P 10 produce

O.m? important question that arises in agenda-driven systems is how to find the most

promising task on each cycle. One way to do this is simple. Maintain the agenda sorted

by rating. V_Vhe.n a new task is created, insert it into the agenda in its proper place. When
a task‘has 1ts' justifications changed, recompute its rating and move it to the correct
place in the list. But this method causes a great deal of time to be spent keeping the
agenda in perfect order. Much of this time is wasted since we do niot need perfect order.
We only need to know‘thc proper first element. The following modified strategy may -
occasionally cause a task other than the best to be executed, but it is significantly cheaper
than the perfect method. When a'task is proposed, or a new justification is added to an
existing task, compute the new rating and compare it against the top few (e.g., five or
ten) elements on the agenda. If it is better, insert the node into its proper position at the
top of the list. Otherwise, leave it where it is or simply insert it at the end of thé agenda.
At the beginning of each cycle, choose the first task on the agenda. In addition, once in
a while, go through the agenda and reorder it properly.

An agenda-driven control structure is also useful if some tasks (or nodes) provide
negative evidence about the merits of other tasks (or nodes). This can be represented
by justifications with negative weightings. If these negative weightings are used, it may
be important to check not only for the possibility of moving a task to the head of the
agenda but also of moving a top task to the bottom if new, negative justifications appear.
But this is easy tg_do.

As you can see, the agenda mechanism provides a good way of focusing the attention
of acomplex system in the areas suggested by the greatest number of positive indicators.
But the overhead for each task executed may be fairly high. This'raises the question of
the proper grain size for the division of the entire problem-solving process into individual
tasks. Suppose each task is very small. Then we will never do even a very small thing
unless it really is the best thing to do. But we will spend a large percentage of our total
effort on figuring out what to do next. If, on the other hand, the size of an individual
task is very large, then some effort may be spent finishing one task when there are more
promising ones that could be done. But a smaller percentage of the total time will be
spent on the overhead of figuring out what to do. The exact choice c')f task size for a
particular system depends on the extent to which doing one small thl\ng real.ly means
that a set of other small things is likely to be very good to do too. It-often requires some * .
experimentation to get right. ' | . ‘

There are some problem domains for which an agenda mechanism is 1.nappr0pnate.
The agenda mechanism assumes that if there is good reason to do something now, then
there will also be the same good reason to do something later unless something better
comes along in the interim. But this is not al‘vs{ays-the case, particularly for systems that
are interacting with people. The following dialogue would not be acceptable to most

people: |
Person: I don’t want to read any more about China. Give me something\ej_se..
Computer: OK. What else are you interested in?

Person: How about Italy? I think I’d find Italy fascinating. |
Computer: What things about Italy are you interested in reading about?

Scanned by CamScanner

[

CHAPTER 2. HEURISTIC SEARCH TECHNIQUE

82
Person: I think I’d like to start with its history.
Computer: Why don’t you want to read any more about Chinza?

oTiE

It would have been fine to have tried to find out why the person was no Ic
interested in China right after he or she mentioned it. The computer choss instead
to try to find a new area of positive interest, also a very reasonzble thing 10 co. But

_in conversations, the fact that something is reasonable now does not
continue to be 50 after the conversation has proceeded fora while. Soitisnotageodidez
simply to put possible statements on an agenda, wait until a later Jull, and then pop out
with them. More precisely, agendas are a good v/ay 10 impiement mopOLONIc?
systems (in the sense of Section 2.4) and a poer way 10 implement nonmonotonic Onss.

Despite these difficulties, -agenda-driven control structures are very wseful. Th

provide an -excellent way of integrating information from a variety oOf

‘one program since each source simply adds tasks and justificationsio
Al programs. become more complex and their knowledge bases grow.
paticularly significant advantage. :

~

- -
=

oo That Tt 1
Tt 2
mezn {12t 11 Wil

-~ - .i‘lﬂ“;t‘
< ’.f.a,.‘uj

4
1Y

A i i) » i . S S J -~ {':/: O i -
7"~ 3.4 Problem Reduction/ (s -28 S8

So far, we have considered search strategies for OR graphs through which we wanl to-
find a single;path to-a goal. Such structures represent the fact that we will know how to

* get from a niode to a‘goal state if we can discover how 1o get from that node to 2 gozl

state aiong any ore of the branches leaving it

Vv’ »
1341 AND-OR Graphs

Anothg_r’l_(i'ud_ofﬂ;siructure,;\the AND-OR graph_(or tree). 1s useful_for represeniing
the solution of problerns that can. be solved by decomposing them into a set of smaller
problems, all of which must then be solved. This decomposifion. orreducticn, gEpETaLSS
Arcst}EL wg QI_E‘KND_aLc_s.,OEE AND arc may pointto any number of successor nodes,
all of which must be solved in order for the arc to pointitoa “solutionZJust as in z2n OR
- -graph, Sé@%g!lﬂg{_gg may emerge fi rom a single nede, mdxcésﬁlg_a lﬁ@m nwhich
‘The original problem might be solved. This is why the structure is called not simply an
AND graph B,ut"ra’ther an AND-OR graph. An example of an AL\LD:OR_g___raph (which
- aso happens fo be an"AND-OR tree) is given in Figure 3.6.. AND arcs are indicated

with a line connecting all the components. o Vg
o I orderto find sollition$ in an AND-OR graph. we need an algorithm similar to best-

first-searclt but wiili the ability to handle the AND-arcs appropriately. “This algorithm
shiould find 4 paih froin the starting node of the graph to a set of nodes representing |

Solution states. Notice that it may be necessary io get 1o miore than cne soluticn state

since each arm of an AND arc must lead to its own solutior node. ' |

To see why:our best-first search algorithm is not adequate fﬁr searching AND-CR

G graphs; consider Figure 3.7(a). The top node, A, has been expanded, producing two

©arcs, one Iégding'to B and one leading to C andé D. The numbers at each node represent

the value of f’ “at that node. We assume, for simplicity, that every operation has 2

uniférm cost, so each_arc with a single successor has a cost of 1 and each AND arc with

Scanned by CamScanner

sakBiawin w aa

B -t F - SRR SRNERRESS

34. PROBLEM REDUCTION 83

Goal: Acquire TV set

Goal: Stead TV set | | Goal: Earn some money Goal: Buy TV set

-

Figure 3.6: A.Sitple AND-OR Graph

v
A A
-— f \ ‘ - I
9) . e
B € D] - -[B . [+ D
3 3 @ ge
. A (17) ©) D\
TE] [¥] [G]] [1] [?
) T30 3 @ (5 (10
(a) . ()

Figure 3.7: AND-OR Graphs

multiple successors has a cost of 1 for each of its components. If-we Ioouust at the
nodes and choose for expansion the one with the lowest f' value, we m‘ust\.sel'ect-.C. |
But using the information now available, it would be better to explore the pa;h*gonpg
through B since to use C we must also use D, for a total cost of 9 (C“+D+2) f:omparegi_ to
the cost of 6 that we get by going through B. The ‘prpbl'em is that the cho1c_e-qf‘wh1ch*
node to expand next must depend not only on the f/ v'z_xl._u?‘of that ‘node but ‘a]s‘o—on
“whether that node is part of the current best path-frpm thc? x'nlt;a'l node. Thc? tree's?lown
in Figure 3.7(b) makes this even clearer. The {jn;o_st “prOmlSlng s.mgle no_‘dg is ,GV with an.
7 value of 3. It is'even part of the most promising arc Q-H, with a total cost of 9. But
that arc is not part of the current best path since to use it we must als9 use th_e;,arc I-J;
with a cost of 27. The path from A, through B, to E and F is ‘bctte.r, with a total-cost
of 18. So we should not expand G next, rathef we should examine either E or F N
_# In order to describe an algorithm for searching an AND-OR graph, we need 10 exploit
+ value that wé Gall FUTILITY . If the estimated cost of a solution becomes greater than

v

‘then we abandon the search.” FUTILITY should be chosen to
t any solution with a costabove it is too expensive tg

<
—

The valte of FUTILITY, then_ |
correspond to a threshiold suchi tha _ Ve Tt foo ex
.'gé_;)};gtical “even if it could ever be found. Now'we can state the ATEoTthi.

Scanned by CamScanner

84 CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

A!gorithm: | Problem Reduction
1. Inttialize the graph to the starting node.
2. Loop until the starting node is labeled SOLVED or until its cost goes above
FUTILITY: _
(a) - Traverse the graph, starting at the initial node and following the current best
path, and accumulate the set ofmr‘;«qggsu_ntuhqgggg,gﬂ._IhaL.path.andhavc.noLcht
~“been expanded or labeled as.solved.
(b), Pick on/e‘ofﬁthese unexpanded nodes and expand it. If
‘ assign FUTILITY as the value of this node. Otherwise, add its successors
to the graph and for each of them compute f/ (use only k' and ignore g,
for reasons we discuss below). If f* of any node is 0, mark that node as

' SOLVED. |
(c) Change the f’ estimate_of the.newly-expanded rnode to reflect the new
information provi&d by its successors. _“P’rgpagat_c:Ug__}}’i‘g‘_.'g@gnge backward
through the graph. If Ay node contains a successor arc whose descendants

_““are all solved, label the node itself as SOLVED. At each node that is visited

»_Ethe going up the graph, decide which of its successor arcs is the most
promising and mark it as part of the.current best_path.. This may cause
't'ﬁej-c':hrrém, best path to change. This propagation of revised cost estimates

. back up the tree was not necessary in the best-first search algorithm because
_only unexpanded nodes were examined. But now expanded nodes must be
reexamined so that the best current path can be.selected.- Thus.itis importaht\/’

that their f_ values be the best estimates available.

B D

there are no SUCCessors,

This procéss is illustrated in Figure 3.8. At step 1, A is the only node, so it is at the
t best path. It is expanded, yielding nodes B, C, and D. The arcto D

end of the curren
romising one emerging from A, since it costs 6 compared to B

is Tabeled as-the most p
Marked arcs are indicated in the figures by arrows.) In step 2,

and .C;'which costs 9. (|
node D is chosen for expansion. This process produces one new arc, the AND arc to E/

and F, with a combined cost estimate of 10. So we update the f* value of D to 10.
Going back one more level, we see that this makes the AND arc B-C better than the arc
to D, so it is labeled as the current best path. At step 3, we traverse that arc from A
anddiscover the unexpanded nodes B and C. If we are going to find a'solution along
this path, we w'ill have to expand both B and C eventually, so let’s choosg to explore B
first. This generates two new arcs, the ones'to G and to H. Propagating their /' values
backward, we update.f’ of B to 6 (since that is the best we think we can do, which we
can achieve by going through G). This requires updating the cost of the AND arc B-Cto
12 (6+4+2). After doing that, the arc to D is again the better path from A, so we record
that as the current best path and either node E or node F will be chosen for expansion
at step 4. T/h’fs process continues until either a solution is found or all paths have led to
dead ends,/indicating that there is no solution.

In addition to the difference discussed above, there is 2 second important-way in
which an-algorithm for searching an AND-OR graph must differ from one for searching
an OR graph. This difference, too, arises from the fact that individual paths from node
‘o node cannot be considered independently of the paths through other nodes connected

Scanned by CamScanner -

3.4. PROBLEM REDUCTION o

Before step 1 Before step 2
Al) - Tale
O 1 \
B C D]
3 -))
Before step 3 ‘ - -+ . Before step 4
- [a
1) \
Bl® [C] D|(10)
| / - @
\ ' (10
A N
E| [F G| [H E|] [F
@ @ G @D @ @

Figure 3.8: The Operation of Prol_)]ém Reduction

to-the original ones by AND arcs. In the best-first search algorithm, the desired path
from one node to another was always the one with the lowest cost. But this is not always
the case when searching an AND-OR graph. '

Consider the example-shown in Figure 3.9(a). The nodes were generated in alpha-
betical order. Now suppose that node J is expanded, at the next step and.that one of its
successors is node E, producing the graph shown in Figure 3.9(b). This new path to E
is longer than the previous path to E going through C. But since the path through C will
only lead to a solution if there is also a solution to D, which we know there is not, the
path through J is better. v - _

There is one important limitation of the algorithm we have just described. It fails
to take into account any interaction between subgoals. A simple example of this failure

is shown in Figure 3.10. Assuming that both node C and node E 'uitimately lead toa
solution, our algorithm will report a complete solution that includes both of them. The
AND-OR graph states that for A to be solved, both C and D must be solved. But then
the algorithm considers the solution of D as a completely separate process from the
solution of C. Looking just-at the alternatives from D, E is the best path. But it tums
out that C is necessary anyway, so it would be betteralso to use it to satisfy D. But
since our algorithm does not consider such interactions, it will find a nonoptimal path.
In Chapter 13, problem-solving methods that can consider interactions among subgoals

aré presented.

Scanned by CamScanner

86 i ' .
. CHAPTER 3. HEUR_J'STIC SEARCH TECHNIQUES

A

D B C D

ANAN

Uhsolyablc G _ H) E , F Unsolvable
RE /\I | t
. g
(a) o b
Figure 3.9 ‘A Longer Path May Be Better
1A
D
cl E|
() @)
R)
" Figure 3,10: Interacting Subgoals Ao b N
. }:) _“;,;;

o ! ; W
: G g S Y
3@2 The AO* Algorithm_- \. Cnn A h))
The problem reduction algorithm we just described is a simplification of an
d Montanari [1978], and Nilsson

described inMartelli and Montanari [1973], Martelli an

.algorithm, the name we assume..

- 1980]. Nilsson calls it the AO™
m§he;4banlhe_tm EN-and CLOSED, that were used in the A% algorithm, -

the, AQig’lg‘dEifhm'will_ySe asin glﬂq_gg_yr’ggﬁulfg_(‘?(?ﬁ!’l{ , representing the part of the search
graph that has been explicitly generated so far. Each ri6de in the graph will point both
s and up to its immediate predecessors. Each node
ted with it an A’ value, an estimate of the cost of 2

tion nodes. We, will not store g (the cost of getting from

“the start node to the current node) as We did in the A* algorithm. It is not possible to

compiite a single such value since there may be many paths to the same state. And such

a valti¢ is not necessary ‘because. of the top-down traversing of the best-known path,

~ which guarantees that odly'nddé,s that are.on the best path will ever be considered for
" expansion. §9j_’i 'will serve as the estimate of goodness of a node;

“down fo its immediate SUCCESSOrS
in'the graph will also have associa
~pith from itselfto a set of solu

e o S A e, o e B A R - e o

Scanned by CamScanner

34. PROBLEM REDUCTION . 87

Algorithm: AQO* QL\(\fo*»uﬁ,)

. Let GRAPH consist only of the node representing the initial state. (Call this node
INIT.) Compute #'(INIT),

2. Until /NITis labeled SOLVED or_until INIT's i value becomes greater than
FUTILITY repeat the followmo procedure: S

(a) Trace the labeled arcs from INIT and select for c&p_t_n_x_g one of the as yet
unexpandcd nodes that occurs on this path. Call the selected node NODE

(b) Generate the successors ofNODE Ifthcre are none, then assxgn FUTILITY

i.- Add SUCCESSOR to GRAPH.

i, If SUCCESSOR is a terminal node, fabel 1t SOLVED and assign it an i’)4
" value o e

iii. If SUCCESSOR is not a terminal node, COmoute its b’ value.

(c)-Propagate the newly discovered information up the graph by domo the!
followmg Let S be a set of nodes that have been labeled SOLVED or whose

.._._.__.-—-u

proce lure: ..

. i possible, select from S a node none of whose descendants in GRAPH
occurq in S. If there is no such node, select any node from S “Call this,

Tnode CURRENT and remove it from S

il. fCompute the cost of each of the arcs emergmg from CURRENT. The
cost of each arc I is equal to the _sum ofthe H values of each of the nodes
at the end of the arc plus | whate(/er the cost. of the arc |tse1f is. Assngn
as CURRENT s new A’ value the minimum of the costs just computed

for the arcs.emerging from it.
. Mark the best path out of CURRENT by markmg the arc that had the

'mmmum cost as’ computed in the previous step i

iv. Mark CURRENT SOLVED if all of the nodes connected to 1t through
“the new Jabeled arc have been Iabeled SOLVED '

v. If CURRENT has _been labeled SOLVED or if the cost of CURRENT
“was Just changed then its new status must be propagdted back up the

“graph. S’b add all of the a ancestors of CURRENT toS.

v o

P o e sttt e)

o
—

h noticing a couple of points about the operauon of this algorithm. In step
2(c)v, the ancestors of a node whose cost was. altered are added to the set of nodes whose'

| [also be rewsed As stated the. algorithm will insert. all the node’s ancestors
Sy mUSK = hich may result in the propagatlon of the cost change back.’ 'up through
:l::r,tg};e::r[n!;r lof paths’ that ‘are ‘already known not to be very good. For ‘example,

Figure 3.11, it is clear that the path through C will always be better than the path
in Figur

through B, so work expended. on the path through B is wasted. But if the cost ofE s
I F > .

It is wort

Scanned by CamScanner

88
CHAFPTER 3. HEURISTIC SEARCH fl%'lf/r‘/{zfl 5

Ery

: ‘ z_
WL T PR, U
__!)_w J-'M s il ":/ /‘
P P e ook T YLD
3y A= AT : 5o -
7
| (7
: "'e'rﬁ A)
i

Blao [Cl ©

D|(3) E|©®)

Figure 3.11: An Unnecessary Backward Propzgztion

8

revised and that change is not propagated up through B as well 25 tarough C, B mzy
appear to be better. For example, if, as a result of expanding poie £, % update U5

cost to 10, then the cost of C will be updated 10 11. If this is 2!l thzt is done, then

when A is examined, the path through B will have a cost of only 11 compzred 10 12
for the path through C, and it will be labeled erroneously 2s the Mol promising paci.
In this example, the mistake might be detected at the next £1£9, during which D will o2
expanded. If its cost@:libnges and is propagated back to B, B’s cost will o2 recompuied
and the new cost of E will be used. Then the new CO5st of B will propagze back 10 A
At that point, the path through C will again be better, All thar happened ws that sOme
time was wasted in expanding D. But if the node whose cost has chenged is farthes
down in the search graph, the error may never be detected. An example of 1215 is shown
in Figure 3.12(a). If the cost of G is revised as shown in Figure 3.12(5) 2a< if 18 is

not immediately propagated back to E, then the change will never be recorded znd 27

‘nonoptimal sdlutien through B may be ,_discovcrad_
pagation of sep

A second point concemns the termination of the backward cost propaz
2(c). Because GRAPH may contain cycles, there is no guarzniee that this process will
; reaches the “top” of the graph. It tums out 52! the process

terminate simply because it
can be guaranteed 10 terminate for a different reason, though. One of the exercises &

thie end of this_chﬁ'ptcr explores why.

Scanned by CamScanner

3.5 Constraint Satisfaction

any problems’in Al can be m&w;d;mgb}_;ms of cons rramr.;atljaa:on in which the
goal 15 1o discover some problem state that Sdtloﬁ";A,élVCn set of constraints. Examples

of this sort o problem include cryptarii] imetic-puzzles (as described in Section 2.6)

and. _ariy real-world pergeptual labeling problems. Design tasks can ziso be viewed a5

wnstramt~54nsfamon problems in which a deslgn must be created within fixed limits
P i
on, t:mf:, cost, and materials.

‘ %B y viewirg a problem as one of censtraint satisfaction, it is often p_osstbl__mmduge o
substantially the amount of wrch that is required as compared with 2 method that

attempts to form partial wlut:ons directly by choosing specifi¢ values for Qp_mgomms
of the cvcntual poluuon For example, a straightforward search procedure to solve a

Cryptanthmenc problem might operate in a state space of partial solutionsin which letters
/

Scanned by CamScanner

35. CONSTRAINT SATISFACTION

: = % . A“(ru

B '(13) C|(10) -+ B {13) Cl(1s)

D|(5) (é) E r F|(3) D]). ®G[E F|G)

i g ' | e

H| ©) ‘/
@ | S -

Figure 3.12: A Necessary Backward P'ro;}ggation

are assigned particular numbers as their values. A depth-first control scheme could tien
follow a path of assignments until either a solution or 2n inconsistency is discoversd. In
Zonirast to this, 2 constraint satisfaction approach to solving this problem zvoids making
guesf/scs on particular assignments of numbers to letters until it kas to. Inste=d, the initial
set of constraints, which says that each riumber may correspond 10 only one letter and
that the sums of the digits must be as they are giveninthe problem, is first augmented -
to include restrictions that can be inferred from the rules of arithmetic. Then, zlthough .
guessing may still be required, the number of allowable gussses is redgced and so the
degree of search is curtailed. =) :
. 0\‘% “onstraint satisfaction is 2 search procedure that operaies 1 2 space of constrainl,
— e e > =
' | sets=The initial state contains the constraints that arc originally given 11 magmblm'
%\(f?dz . Esj_riptig. A goal state is any state that has beenconstralneéte:zo:fgp_ where' @%
B must be defined for eac problem. For example, for W@L@emﬂgb_@@
~ach letter has been assigned a unique nUMET value. e P o
Q@ %C;Qﬂst'faﬂiﬁm icfaction is a two-step Process. First, constraints ar¢ :11550\ ;Iuﬁéa
. N 1 ~ v Fihere is SUIl POt 2 S 1
5 throughout the system- Then. 1t there1ssit ol
possible g _ - new constraint

propagated as far as hout the s Tihere &
C)Qy/ ﬁﬁ'ﬁz/hg,begins. A guess about. something 1S “made ‘and zdded as
“Br S Fen OCK 1 1 A 1 u -
Propagation can ihen occur with this new constraint,. 20 drsoih.;h.' L;' ERE
" The first step, propagation, arises from- the fact that the(; .iriw ;;m;p: o

among the cons_traims. These dependencics occur because man) S)

= ; . . in more n one constraint. So.
more than one object and many objects pATICIP: - ma’i‘]—sgg_ if we added the
for example, assumé we st

art with on¢ constraint, N=E * L. o w E. el
constraint N = 3, we could prop v const

agate that 10 get 2 stronger e ik
that E = 2. Constraint propagation also arises from the p

Scanned by CamScanner

90 CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

H
that allow additional constraints to be inferred from the ones that are given. Constraint
- propagation. ferminates for one of- wo reasons. First, a contradiction may be detected

[f this happens, then lhere_,i&no Solution censistent wmf'ﬂ the known constmmts If

the contradiction 1r1y'olve§9*n]y those constraints that were given as _part of the problem

s;)eeaﬁcatlon[égpposed to ones that were guessed during problem SoIvmgL_hen no
solution exis e RJM“IE reason for termination is that Ihej)ropaoatlon has

- run out of stear gnd there are no fuﬂhgr_g;hmges.LbaLcan.bz_made_On the basis of cu

rrent
nowl\.doe ' this happens and a solution has not yet been adequately specified, then

Searthis. necessag to get the process moving zgair.

om o — -

\AL-thTs point, the second step bePLns Some hypothesis about a way to strengthen

the constraints must be made. In the. N, 10T &5

case€of the cwptarlthmetnc probiem, for example,
(his usuall Iy- means guessing: a vamcular value for some letter. Once this has been” done,

- constraint propagatijon can begm again from this new stzi't_emlfa solutlon is found, it can
be reported. If still. more gucsses are required, they can be made. If a contradiction is
~ detécted, then ba"ktrac.]ung can be used to try a different guess and proceed with it” We

can state this procedure more precxsely as follows:

Algorithm: Constraint Satistaction S ’

I. Propagate available constraints. To do this, first set OPEN to the set of all objects

‘that must have _values assigned to them in a complete solutlon Then do until an

: meonsxsteney is detected or until OPEN is empty: T

(a) Select an object OB from OPEN. Strengthen as much as possnb]e the set-of
constraints that apply to OB.

(b) If this set is different from the he set that was asswned the last’ Ume OB was

examined or if this is the first time OB hasbeeuexanmed then add to OféN
“all _Objects that share_any constraints with OB

-{c) Remove OB from OPEN

N

= I the unjon of the constraints dlaCOVCT“d above deﬁnes 2 solutl

on, then quit and _
repO't the solution. : =

Ifthe union of the constraints discovered above defines a contradiction, then return
failure. . g : T ———

~—

4. If neither ofthe > above occurs, then it’is necessary to make a guess at something in -

order to Q"OCCCd .’]0 do this, joop until'a solutxon is found orallg poss:b.e :olLuons
g
have been_ eliminated:

(a) Select an object whose value is not yet determmed and gP]ec[a way of
strengthening the conetramts on that object. ~ T ,

(b) Recursively invoke con conslrdmtsausf'zc_lon with the currerrf set of constraints
dunmented by the strengthening constramtjuxt ee.ected '

This dlgonthm has_been stated as generally as poss:ble To apply it in a particular
prablem domain requires the use of two kinds of rules: rules that define the way
constraints may. validly be propagated and rules that suggest guesses when guesses are

/ P
Scanned by CamScanner

3.5 CONSTRAINT SATISFACTION 01

Problem:

MONEY /
-

Initial State:

No two letters-have the same value.

The sums of the digits must be as shown in
the problem. -

Figure 3.13: A Cryptarithmetic Problem

-

necessary. It is worth noting, though, that in some problem domains guessing mzay
not be required. For example, the Waltz algorithm for propagating line labels in 2
picture, which is described in Chapter 14, is a version:of this constraint satisfaction
algorithm with the guessing step eliminated. In general, the more powerful the rules for
propagating constraints, the less need there is for guessing.)

To see how this algorithm works, consider the cryptarithmetic problem shown in
Figure 3.13. The goal state is 2 problem state in which all letters have been assignec.2
digit in such a way that all the initial constraints are satisfied. _

The solution process proceeds in cycles. At each cycle, two significant things are

done (corresponding to steps i and 4 of this algorithm):

\1/ Constraints are propagated by using rules that correspong@ to the properties of

arithmetic.

%/%'value is guessed for some letter whose value is not yet determined.

In the first step, it does not usually matter a greal deal what order the propagation is
done in, since all available propagations will be performed before the step ends. In the
second step, though, the order in which guesses are tried may have a substantial impact
on the degree of search that is necessary. A few useful hreuristics can help to select the
best guess to try first. For example, if there is 2 letter that has only two possible values
and another with six possible values, there is a better chance of guessing right on the first
than on the second. Another useful heuristic is that if there is a letter that participates
in many constraints then it is a good idea to prefer it to a letter that participates inz
few. A guess on such a highly constrained letter wiH usually lead quickly eitherto a
contradiction (if it is wrong) or to the generation of many additional constraints (af ®3s
right). A guess on aless constrained letter, on the other hand, provides less information.

The result of the first few cycles of processing this example is shown in Figure 3.14.
Since constraints never-disappear at lower'levels, only the ones being added are shown

Scanned by CamScanner

——

5z CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

foreach level Irwill not be much harder for the problem solver 1o zocess the constrainis
2s 2 522 of Fisms t2an 25 one Jong list, 20d this zpproach is efficient both in terms of storzge

space z2nd the ezse of backiracking. Another reasonable zpproach for this problem would
e 1o sor= 201 the consirainis in one central datzbase znd 2lso to record 2t each nods
e chamzes thar men be sndons Guring backiracking. Cl, C2, C3, 2ad C4 indiczie the

—

> E - - Bl -:f'- = T . NN, | - <, - = ~F
cary bizs ot of the columns, pumbering from the right.

<%=

Enizzlly, rules for propageeing constraints generate the following additional con-
SRS -

e M = 1, since two single-dizit numbers plus 2 czrry cznnot total more than 19.
S=% M , G (10 generate tF yandM=1,8+1+C3>

e S=20orG, sinczS+ M+ C3 > 9 (1o gensrals ths carmy) 24 M=1,5+1+
9,505+ C3>8amdC3samost L.

o O=0, o= S+ M(1)+ C3 (<= 1) must be zt Jezst 10 to generzte 2 carry zad 1t
ez Bezz mos 11, Ba Mis zlrezdy 1,50 Omust b 0.

e N =E or E+ 1, depending on the vzlue of C2. But N cann ¢ bzve the szme vaiue
z=E SoN=E+1a=dC2is 1.

o Inoriex for 2 wbeljteamof N+ R +Cl must be grezterthan 9,50 N+ R
most be greaterthan 8. g

. }Je?;ce:':fxwg%&iﬁlz,ammi:ha 'r';'in,cha:x;rﬁbeQ.

Az this poing, 2 v muEms thz2 mo more consirzints czn be generated. Then, 10

Ve - froom bere, we must guess. Su E is zssigned Athe valuz 2. (We chose
o srmerers from bere, Wz MUl ZUsts. SUpPPOTE RIS &02 e value 2. (Ve cho
g 3 e - . . - LA g y 15 &
oo e z vEins foT £ 2L it occurs three times and Guusdnteracts reghly with the
/; - -
=z Mow G2 tezl cycle begins.

Cap.,
L #o == =0
- - a4 T~

The coratrzint propazzicy now chaerves that:

o N

o R=tor9, since R+ N(3;+ClL(] or) = 2 or 12. But since N is zlready 3, the
oy o thEE TS LAIYE numbers cannot be less than 3. ThusR +3 + Oorl)=

= 10+ Y, from the sum in the rightmost colums.

.
[oA)
]
o
\l
N
b
(8]
?
oe

P

s furtiver comatezints can be generzied, 2 guess is required. Sup-
 walue for. 1f we try the value 1, then we eventually reach

z
- ars i thee fipure, Vihen this hzppens, the process will backirack and

A couple o Ay gtions ae wonth mzking on this process. N r;tic:f: that zll thf:: is
prpiced of 2 ermmrgint propagaion reles is that they not infer spurious cxmf.:ra:ms'.
They o ot bzve 10 infer i legal ones. Fur exzmple, we could have rezsoned {hmu gh
1 e yeult tha Cl eqguzis 0. Ve could have done w0 by obrerving that for Cltobe
1, the Sechlowing 1 bodd: 24 =10+ Y. Forthis 1o be the cave, D would have 10
$e % ox G, But both S and Bt be either £ o7 9 2nd three leaters cannot share 190
i, SoClcamaate |, I webad reslized this initizlly, some seasch could have been
groided. Bt since the cofndezing propagsion rules we wsed were not that sophisticated,

Scanned by CamScanner

35. CONSTRAINT SATISFACTION

93
\ (,‘| O
\ S
Initial State SEN D.
"+ MORE
l MONEY
M= U8
S=8o0r9 . '
O=0o0r1*0=0 |
N=E orE+1-* N=E+1
C2=1 : ’
N+R > 8
E<9
R=8o0r9 / [K= .
24D=Yor2+D=10+Y | o\ y-ii;aa-—-m

C1
24D=Y | 24D =10+Y .
N+R = 10+E | D=8+Y
R#9 '‘D=8o0r9
S=8 o -

- D=8
Y=0
Conflict
/
Figure 3.14: Solving a Cryptarithmetic Problem

Scanned by CamScanner

04 CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

’ it took some search. Whether the search route takes more or less actual time than does
| he constraint propagation route depends on how long it takes to perform the reasoning
required for constraint propagation. _

A second thing to notice is that there are often two kinds of constraints. The
first kind arc simple; they just list possible values for a single object. The second
kind are more complex; they describe relationships between or among objects. Both
kinds of constraints play the same role in the constraint satisfaction process, and in the
c;:,'pmrithmctic example they were treated identicaliy. For some problems, however, it

be useful to represent the two kinds of consiraints differently. The simple, value-

. may -
‘ sented explicitly

listing constraints are always dynamic, and so must always be repre
" in each problem state. The more complicated, relationship-expressing constraints are
. dynamic in the cryptarithmetic domain since they are differcnt for each cr}’pmrilhm!{!ic

problem. But in many other domains they are static. For example, in the Waliz line
| labeling algorithm, the only binary constraints arise from the nature of the physical
world, in which surfaces can meet in only 2 fixed number of possible ways. These
ways are the same for all pictures that that algorithm may see. Whenever the binary
~ constraints are static, it may be computationally efficient not to represent them explicitly
" in the state description but rather to encode them in the algorithm directly. When this is
" done, the only things that get propagated are possible values. But the essential algorithm
" is the same in both cases.

So far, we have described a fairly simple algorithm for constraint satisfaction in
which chronological backtracking is used when guessing leads to an inconsistent set of
constraints. An alternative is to use a more sophisticated scheme in which the specitic
cause of the inconsistency is identified and only constgaints that depend on that culprit
" are undone. Others, even though they may have been generated after the culprit, are
1eft alone if they are independent of the problem and sts cause. This approach is called -
- dependency-directed backiracking (DDB). Itis described in detail in Section 7.5.1.

3.6 Means-Ends Analysis

So far, we have presented a collection of search strategies that can reason either forward
' or backward, but for a given problem, one direction or the other must be chosen. Often.
however, 8 mixture of the two directions 1s appropnate. Such a mixed strategy would
" make it possible 1o solve the major parts of a problem first and then go back and solve
| the small problems thatanse in “gluing” the big pieces together. A technique known as
| : — s I a
meams-ends analvsis allows us to do that,

w . e e : i

i The means-cnds analvsis process centers around the detection of differences hetween

“the current state and the goal statc..m(_)nie_;}g}i*a difference 15 1solated, an operator that

g,

Lcan reduce m!'lulmc'_‘g_!_l ference musmi‘ougd.. But perhaps that operator cannot be applied
o ”i’ﬁ:t::ét}fi@j}__f:lfl,wws“ we set up a subproblem of getng 1o a state in which it can
‘be applied. The kind of backward chaining in which operators are selected and then
'subgoals are set up to establish the preconditions of the operators is called operator
subgoaling. But maybe the operator does not produce exactly the goal state we want.
'Then we have a second subproblem of getting from the state it does produce to the
%Go"‘" But if the difference was chosen correctly and if the operator is really effective
la(reducing the difference. then the two subproblems should be easier 1o solve than the

.

| ——

| /J
Scanned by CamScanner

36 MEANS-ENDS ANALYSIS 95
Operator Preccr,d,'::'cn:./ Resulzs
o
PUSH(obj, loc) at{robof, obj) / ar{obi, boc) /
large(obj at{robor, loc
clear{oby) 7 _
armempty o’
CARRY (obj. loc) at{robot, obj) A afobg locy 2 7
small(obj) = zz{robot, joc
v ‘ . ;] ‘I
WAL K(loc) none ar(robot. boc) _~
PICKUP(chj) at(robot. obj) - boldinglob;) -~
PUTDOWN(obj) holding(obj) — boldmeg(o0
LACE(objl. c5j2) zt(robot, obj2) 7 on{objl. obyZ
holding(obj1) =~

Figure 3.15: The Robot’s Operators

origina! prcblem. The means-ends analysis process then be applied recarsively. In

-
orenossS = D
.,

order to focus the system’s astention on the big problems first, the differ
=ssien=d prionty levels. - Differences of higher priofily can then be considersd before
g p 3 et

fower pnionity cnes.
~ The first Al program to exploit means-ends analysis was the General Problem Solver
(GPS) [Newell and Simon, 1963 Emst and Newell, 1969]. Iis design was motrvasd by
the observation that peopie often use this technique when they solv

provides 2 good example of the fuzzness of the boundary between bumlding programs

B = = - —
] simplv solve a problar: any

shat simulate what people do and building programs that simply e

=1 U

way they can.
Jus like the other problem-solving techmques we have discussed. means-ends anal-

vsis relies on a set of ruies that can transform one problem state into another. These rules
are usually not represented with complete state descn.'i,_'.stinras on each side. Instead, they)
are represented as 2 left side that describes the conditions that must be met for the rule
to be applicable (these conditions are called the m!e's_ precondirionsy and a ﬁgﬁ; 5;5@
tha: describes those aspects of the problem state that will be changed by the application
of the rule. A separate data structure called a difference table indexes the rules by the
differences that they can be used to reduce.

Consider a simple househoid robot domain. The available operators are shown In
Figure 3.15, 2long with their preconditions and results. Figure 3.16 shows the difference

1able that descnbes when each of the operators is appropriate. Notice that somenmes

there may be more than one operator that can reduce a given difference and that a given
“operator may be able to reduce more than one difference.

Suppose that the robot in this domain were given the problem of moving a desk w»ith

two things on it from one room to another. The objects on top must also be moved. The

Scanned by CamScanner

96 v - “
CHAFPTER 3. HEURISTIC SEARCH TECHIIQUES

1/‘ / - // v

: Push | Carry | Walk | Pickup T puidown | Place |
Move object s T = 1 \ ,
Move robot 1
Clear object ? = | f ,
Get object on object | | : — ?
Get arm empty ——— o
Be holding object | | T s |

Figure 3.16: A Difference Table

A B C D

| | | |
_Stan Goal

‘Flgure 3.17: 1he Progress of the Means-Ends Analysis Method

main difference between the start state and the g9a1 state would be the location of the
desk. To reduce this difference, either PUSH or CARRY could be chosen. If CARRY
is.chosen first, its preconditions must be met. This results in two more differences that
must be reduced: the location of the robot and the size of the desk. The location of the
robot can be handled by applying WALK, but there are no operators than can change
the size of an object (since we did not include SAW-APART]). So this path leads 10 2
dead-end. Following the other branch, we atiempt 10 apply PUSH. Figure 3.17 shows
the problem solver’s progress at this point. It has found 2 way of doing something
useful. But it is not yet in a position to do that thing. And the thing does not get it quite
to the goal state. So now the differences between A and B and between C and D must
be reduced. }

PUSH has four preconditions, two of which produce differences between the start
and the goal states: the robot must be at the desk, and the desk must be clear. Since
the desk is already large, and the robot’s arm is empty, those two preconditions can be
ignored. The robot can be brought to the correct location by using WALK. And the
surface of the desk can be cleared by two uses of PICKUP. But afier onc PICKUP.
an attempt to do the second results in another difference—he arm must be empty.
pUTDOWN can be used to reduce that difference.

Once PUSH is performed, the problem state is close to the goal state, but not quite.
The objects must be placed back on the desk. PLACE will put them there. But it canno*
be applied immediately. Another difference must be eliminated, since the robot must
be holding the objects. The progress of the problem solver at this point is shown in
Figure 3.18.

The final difference between C and E can be reduced by using WALK to get the

robot back to the objects, followed by PICKUP and CARRY.
The process we have just illustrated (which we call MEA for shori) can be summa-

rized as follows:
Scanned by CamScanner

3.7. SUMMARY 97

-t] | | b e
Walk ' Pick up1Put down IPick up I Put down ! Push I f Place /

z;x "B C E D
I

-

Start ~ o Goal
Figure 3.18: More Progress of the Means-Exds Method

Algorithm: Means-Ends Analysis (CURRENT, GOALy

1. Compare'CURRENT to GOAL. If there are no differences between them then
return. ’ %

2. Otheiwise, select the most important difference and reduce it by doing the fol-
lowing until success or failure issignaled: T -

(a) Selectan as yet untried operator O thiat is applicable tothe current difference.
If there are no such operators, then signal failure. ‘

(b) Atteinpt to apply O to CURRENT. Genéfafe descriptibns_ of two states:
O-START, a state in which O’s preconditions are satisfied and O-RESULT,"
the state that would result if O were applied in O-START .

) If e
(FIRST-PART « MEA(CURRENT, O-START))
and) . £ . ..‘ L | 3
(LAST-PART « MEA{(O-RESULT, GOAL))

“are successful, then signal success and return the result of concatenating

FIRST-PART, O, and LAST-PART. '

Many of the details of this process have been ‘g_rgj_ht;t_ewc_iwjﬂ this di§:q£1§§ion. In particular,
the order in which differences are considered can be critical. It is important that
significant differences be reduced before less critical ones. - If this is not done, a great
deal of effort may be wasted on situations that take care of themselves once the main
parts of the problem are solved. , =

The simple process we have described is usually not adequate:for solving complex
problems. The number of permutations of differences may’gctwtqg‘]qgey. Working on
“one difference may interfere with the plan for reducing another. And in complex worlds,
the required difference tables would be immense. In Chapter 13 we look at some ways
in which the basic means-ends analysis approach can be extended to tackle some of

these problems.

Scanned by CamScanner

3.8 Exercises
Jhen would best-first search be worse than simp!e‘breadtﬁ-ﬁf,s.t search”

2. Suppose we have a preblem that we intend to solve usinig a heuristic best-first’
-search pr ocedurP Wc need to decide whether to implement it asa tree search or
as a graph searcb Suppose that we know that, on the average, each dlstmct node
-will be generated N nmes durmg the search process. We aiso know that if we use ‘
-a graph, it will tal\ on the average, the same ameunt of time to check a node to

ee if it has already been generated as it takes 0 process M nodes if no checking
is done. How.can we decide whether to use a tree or a ;zraph" 1n addition to the .

parameters N and M, what other assumptions must be made?

Consider trying i0 solve the 8-puzzle using hill climbing. Can you find a heuristic

3.
 function that makes this work" Make sure it works on the following example:
Start Goal
g | 2.]3 1|23
g [5]6 4156
| 5 7138
4|7 5

Scanned by CamScanner

3.8. EXERCISES

99

4. Describe the behavior of a revised version of the stegpest ascent hill climbing
algorithm in which step 2(c) is replaced by “set current state to best successor.”

e 8 :Suppose that the first step of the opération of the best-first search algorithm results
In the following situation (a + b means that the value of 4" at 2 node is a and the

value of g is p):

|B

The second and third steps then result in the following sequence of situations:

!
|

f
’

A

(4+1)

Bl (4+1) C

D

(a) What node wiﬂ be expanded at the next step?

(b) Can we guarantee that the best solution will be found?

(3+1)

(4+2)

/

e

E

(3+1)

(4+1)

(3+2)

A

(3+1)

(4+42),

6. Why must the A* algorithm work properly on graphs containing cycles? Cycles
could be prevented if when a new path is generated (o an existing node, that path -
were simply thrown away if it is no better than the existing recorded one. If
g is nonnegative, a cyclic path can never be better-than the same path with the
cycle omitted: For cxample, consider the first graph shown below, in which the
nodes were generated in alphabctical order. The fact that node D is.a successor
of node F could simply not be recorded since the path through node F is longer
than the one through node B. This same rcasoning would also prevent us from
recording node E as a succes;sor of node F, if such was the case. But what would
happen in the-situation shown in the second graph_bclow if the path from node G
1o node F were not recorded and, at the next step, it were discovered that node G

100

"7. Formalize the Graceful Decay of Admissibility Corollary and prove that it Is o2 _
“of the A¥ algorithm. - 7

. In step2(a) of
path is chosen fo
~this choice.

CHAPTER 3. HEURISTIC SEARCH TECHNIQUES

is a successor of node C?

= ‘\i - :) A
Al B S
i < D
O B o A B—
‘&., -~ 1:: o B =
B {iC Y-
\ D -
5 »
\ = ,‘
" E e ~
v '
F
\i - T
. F 20 -
D -
X ™=
G H ‘ l'\}‘_‘;' ,'{3..
\ © 3

the AO* algorithm, a random state at the end of the curent best
r expansion. But there are heuristics that can be used to infizence
For example, it may make sense to choose the state whoss current
cost estimale.isAthe lowest. The argument for this is that for such nodes, only 2
few steps aré required before either a solution is found or a revised cost estimate
is pro'duced; With nodes whose current cost estimate is large, on the other hand,
many steps may be required before any new information is obtained. How would
the algorithm have 10 be changed to implement this state-selection heuristic?

The backward cost propagation step 2(c) of the AO* algorithmmust be guarantesd
to terminaté even on graphs containing cycles. How can we guarantee that itdoss?
To help answer this question, consider what happens for the following two graphs,
assuming in each case that node F is expanded next and that its only successor

is A ' B :
: - A28 Al@S)
e[} av[c] e [D]us an [C bl as
' /(J\lta bf Té‘é.‘ X
//\“5\\'&_,._-‘ - '_7\7.9/0_.
| NN

(0 |E auice - Fjae

X
<O, N -7
5 ?
s . ";_\.‘- g ./i
LAY AWROR S

Scanned by CamScanner

1.8, EXERCISES ' -
101

Also consider wh ns i . .
o at happens in the following graph if the cost of node Cis changed

Al (6)-

© [B

cl ®

10. The AO* algorithm, in step 2(c)i, requires that a node withno descendants in'S be
se}ccted from S, if possible. How should the manipulation of S be impl'emente'd S0
that such a node can be chosen ef ficiently?. Make sure that your technique works
correctly on the following graph, if the cost of node E is changed: '

A
F - ~ C C) - £ =
& 1) 3 3)i ~ e b - / > < P
&7 b YN TS - R - WL k.
- . da o s
Yy . S e -
F’f‘ > » P B C v g .- A
) . gl '3 F= -4 1
P: J Z‘n - * % LA i T
v
é; { D D, oo
i ﬁ ‘_x(%4 [
1 3
2 g 0
> ™ R

'

11. Consider again the AO* algorithm. Under what circumstances will it happen that -

there are nodes in S but there are no nodes in S that haveno descendants also in'S?

12. Trace the constraint satisfaction procedure solving the following cryptarithmetic

\ problem: @r ’ (? ! &’ 0 d
CROSS (;L's k-“- ()‘: . < &’
+ROADS {'\":\ 0 .['\ \} N .
______ \ e s R
DANGER DA nG & e

13. The constraint satisfaction procedure we.have described performs depth-ﬁrst
search whencver' some kind of search is necessary. But depth-first is not the
only way to conduct such a search (although it is perhaps the simplest).

(a) Rewrite the constraint satisfaction procedure to use breadth-first search.
(b) Rewrite the constraint satisfaction procedure to use best-first search.

problem of getting

14. Show how means-ends analysis could be used ‘to solve the _
he rs are walk, drive,

from one place to another. -Assume that the available operato
+ake the bus, take a cab, and fly.

Scanned by CamScanner

