Chapter 1

What Is Artificial Intelligence?

What exactly s artificial intelligence? Although most attempts tc define complex and
widely used terms precisely are exercises in futility, it is useful to draw at least an ap-
proximate boundary around the concept to provide a perspective on the discussion that
folloys. To do this, we propose the following by no means universally accepted defini-
tion. mﬁczal intelligence (A) is the study of how tg make computejdfﬂh'ngs WhI_Ch_
at thé”moment, people do_befiesd This definition is, of course, “somewhat ephemeral
because of its reference to the current state of computer science. And it fallS_LOJnclud;z

some areas of potentially very large impact, namely problemsit hhat cannot now be solved

T, s th s

—— .

well by either computers or peo ___1 But it provides a good outline of what constitutes

artificial mtelhgcnce and it av01ds the philosophical issues that dominate attempts to
define the meaning of either artificial or intelligence. Interestingly, though, it suggests a
similarity with philosophy at the same time it is avoiding it. Philosophy has always been
the study of those branches of knowledge that were so poorly understood ‘that they had

4 e et e ot 8 e St a3,

not yét bécome separate d15c1plmes in the:r own nght As fields such as mathematics or

e e

physics became more advanced, they broke off from philosophy. Perhaps if Al succeeds
it can reduce itself to the empty set.

1.1 The AI Problems

What then are some of the problems contained within AI? Much of the early work in the
ﬁeld focused on formal __gi_aks,,xuch.as game playing and t theorem provmg \Samuel wrote
a checkers- playmg program that not only played games wi wnth _opponents but also used
its ex;iemence at_those games to improve its later performance Chess also received a
good deal of attention. The Logic Theorist was an early attempt to prove mathematical
theorems. It was able to prove several theorems from the first chapter of Whitehead and
Russell’s Principia Math)%matica. Gelemter’s theorem prover explored another area of
mathematics: geometry. '[Game playing and theorem proving share the property that
people who do them well are considered.to be displaying mtelhgcnce ' Despite this,
it appeared initially that computers could perform well at those tasks simply by being
fast at exploring a large number of solution paths and then selecting the best one. It
was thought that this process required very little knowledge and could therefore be

Scanned by CamScanner



CH, .
APTER 1. WHAT IS ARTIFICIAL INTELLIGENCE?

programmed easil . :

no computer is fasfén*zi;’]ﬁtwﬂl see later, this assumption turned out to be false sincs
. 0 OVerco g 2 e

problems. ercome the combinzatorizl explosion generated by ruos

Another ear] o '
= y for. :
ay into Al focused on the sort of problem wolving the: we 6o every

day : = ¢
i when we decide how 1o get 1o work in the mo O

reasoning. It includes reasoning about physical obi ng‘g','g—@ '%Djﬁ‘»%fgmr” ]
__,—-—3-—_ physical objects and their relztionships to exch
0&?{1?-5-._ an object can be in only one place at z time), 25 well 2 rezsoning oot
actions and their consequences (e.g., if you let go of something, it will f2ll to the foor
and maybe break). To investigate this sort of rezsoning, Newell, Shaw, and Simeon buil
the General Problem Solver (GPS), which they applied to several commansense
as w'ell as to the problem of performing symbolic maznipulations of logical expressions.
Again, no attempt was made to create a program with 2 large amount of knowiedge

-
-
=

-

about a particular problem domain. Only quite simple tasks were selected.
As Al research progressed and technigues for handling larger amounts of world

et > ittty e

knowledge were developed, some. progress was made on the tasks just dzscribed and

new tasks could reasanably be attempted. These include pr::rceégm ( .'1."-12:?.2517,
natural language understanding, and problem solving in specialized domzing sl =5
medical diagnosis and chemical analysis.

Perception of the world around us is crucial to our survival. Animzls with much

are current machines. Perceptual tasks zre difficult beczuse they involve znzlog (rzth=
than digital) signals; the signals are typically very noisy and usually z large numbes
things (some of which may be partially obscuring others) must be perczived 2t once.
The problems of perception are discussed in greater detzil in Chzper 21.
- The ability to use language 1o communjcate a wide variety of ideas is perfzps he
most impogaﬂ@g_tbgt__&c;pam@s_humans from the other znimzls. The problem of
a‘&g@-ﬁﬂding spoken language is 2 perceptual problem znd is hard to solve io
reasons just discussed. Eut suppose we simplify the problem by restricting &t
language. This problem, usually referred to as natural language urdersianding. s <
extremely difficult. In order to understand sentences about a topic, It 1S pecessary 1o
know not only a lot about the language itself (its \'ocabgla'}’ and grammar) but 2lso 2
good deal about the topic so that unstated assurrfp:ions can be fm;um :u‘.’e discuss
this problem again later in this chapter and then in more detail in C'a:z;:e: 15.
In addition to these mundane tasks, many people can also periorm ong Of m2y0e
more specialized tasks in which carefully az.:qued expertise is pecsssary. zzmples
of such tasks include engineering design, scientific discovery, medical dizgnosis, and

144

- : ‘e pr in these domains 2iso 1
financial planning. Programs that can solve problems in these do s -:,r,, o=
L &IT Ui L=

the aegis of artificial intelligence. Figure 1.1 lists some of the tasks thar &
of work in AL , - I e
A person who knows how to perform tasks from severzl of the catezonss snowm I
the figure learns the necessary skills in a standard order. First percepiuzl, E""?*"-—f:":' -

learned. Later (and of course for soms people, never) exp
t micht se2m to make

commonsense skills are _ r S0
<kills such as engineering, medicine. Of finance are acquired. It migh

cense then that the earlier skills are easier and thus more amenzable (0 COmMPUITIIZI=S
duplication-than are the later, more specialized ones. For this reason, much of bas IEE=
— = s that thic narvsa ACSIOTNION
AJ work was concentrated in those early aregs. But it turns out thal (s DaIve SSsmsis
is not right. Although expert skills require knowledge that many Of us Conol o =3
ght.
Scanned by CamScanner



1.1. THE Al PROBLEMS
5

Mundane Tasks

» Perception
~ Vision
— Speech
* Natural language
- Underst_anding
- Generation
— Translation

. r =
¢ Commonsense reasoning L(‘M An a3 € AP0 Gap

¢ Robot control .
o oouk P\A‘J g\ Tal Coads |
Formal o
—____’I_‘z_l.Sks o . (,—\ G-,Q.J\“ —81 L\,‘i Sy '
¢ Games )
by @oel. At
— Chess 0 ' -rj
— Backgammon
-- Checkers
-Go
e Mathematics
- Geometry
- Logic

- Integral calculus .
~ Proving properties of programs

Expert Tasks
‘.—_'_\

e Engineering
— Design
— Fault finding
— Manufacturing planning
e Scientific analysis
¢ Medical diagnosis
¢ Financial analysis

Figure 1.1: Some of the Task Domains of Artificial Intelligen::y

 f

- i " & -'
A | — (Gor kS

Scanned by CamScanner



CHAPTER 1. WHAT IS ARTIFICIAL INTELLIGENCE? .

often require much less knowledge than do the more mundane skills and that knowledge
- 1s.usually easier to represent and deal with inside programs.

As a result, the problem areas where Al is now flourishing most as a practical
dxsc1plme (as:opposed to a purely research one) are primarily the domains that require
-only specialized expertise without the assistance of commonsense knowledge. There are

. NOwW _thousc.nds of programs called expert systems.in day-to-day operation throughout -
all areas of industry and government. Each of these systems attempts to.solve part, or
perhaps all, of a practical, significant problem that prev1ously required scarce human
expertise. In Chapter 20.we examine several of these systerfis and explore techmques,
for constructing them.

~ Before embarking on a study of specific Al problems and solution techniques, it is
important at least to discuss, if not to answer, the following four questions:

Mhat are our underlying assumptions about. uuelhgcnce!?

2. /What kinds of techniques will be useful for sgl,y_igguAl_pmblems?

J At what lcvel of deta11 1f at all, are we trying to model human intelligence?-

1 eyt e

ety e g .---a~

The next four sections of this chapter address these questions. Following that is a
survey of some Al books that may be of interest and a summary of the chapter.

Scanned by CamScanner



8 '
CHAPTER 1. WHAT IS ARTIFICIAL INTELLIGENCE?

1.3 What Is an AI Technique?

Artificial i i
little i;?&gﬁg;&:;‘g:pl?&?:g: Sgranha V;ry broad spectrum. They appear to have very
tor the solution of a variety of t}z’e y arbl. Arg thcrg - tt}Chmq}mS mat'me .apprOpnate
are Wit : y‘ f these problems? The answer to this question is yes, there
; , then, if anything, can we say about those technigues besides the fact that they
manipulate symbols? How could we tell if those techniques might be useful in solving
other problems, perhaps ones not traditionaily regarded as Al tasks? The rest of this
book is an attempt to answer those questions in detail. But before we begin examining
closely the individual techniques, it is enlightening to take a broad look at them to see
what properties they ought to possess. |
One of the few hard and fast results to come out of the first three decades of Al
'research is that intelligence requires knowledge. To éompensate forits one overpowering

_______

asset, indispensability, Mgc possesses some less desirable properties, including:

e A A e

‘/ILES.‘:;LEQ&@‘AS— \q6¢ ca?an
he s har - : ectle
oIt is hard to charatterize accurately, (YT e« ]

) It is constantly changing.
o/ 1t differs from data by being organized in a way, that corresponds (o the ways it

willbeused — (avgenigedlon 0esge Pre)

So where does this leave us in our attempt to define Al techniques? We are forced

Lo conclude that an WM that exploits knowledge that should be
represented in such a wa that: :
e, i

JThc knowledge captures g eralizations. - In other words, it is not necessary
Y ly each individual situation. Instead; situations that share

important properties are grouped together. - If knowledge does not-have this
property, inordinate amourits of memory and updating will be required. So we
> usually call something without this property “data” rather than knowledge.

« It can be understood by people who must provide it. Although for many programs,
) ihe bulk of the data can be acquired automatically (for example, by taking readings
ts), in many AI domains, most of the knowledge 2

from a variety of instrumen
‘ program has must ultimately be provided by people in terms they understand.

It can easily be modified to correct error

' in our world view.

To réprescnt separate

s and to reflect changes in the world and

} e It can be used in a great many situations even if it is not totally accurate or

/"
complete;

o It can be used to help overcome . its own sheer bulk by helping to narrow the.range

5Ff)gssibilities that must u5q;i__1'1y_p,§_99u§id_§£ed- '
. Although Al techniques »g'n_u'st'bq designed in keeping with these constraints.in}p_oscd
v Al problems, there is some degree.of independence between problems and problen:
slving technigues. It is possible to solve Al problems: withaut using Al techniques

Scanned by CamScanner

¥



1.3. WHAT IS AN Al TECHNIQUE? 9

(although, as we suggested above, those solutions are not likely to be very good). And
it Visngssiblc to up_ply“Al techniques to the solution of non-Al problems. This is lik.ely to

be a good thing to do for problems that possess many of the same characteristics as do
Al problems. In order to try to characterize Al techniques in as problem-independent a
way as possible, let's look at two very different problems and a series of approaches for
solving each of them.

1.3.1 Tic-Tac-Toe
-ln !h‘is section, we present a series of three programs to play tic-tac-toe. The programs
1in this series’increase in: .

¢ Their complexity

¢ Their use of generalizations

e The clarity of their knowledge

e The extensibility of their approach

Thus they move toward being representations of what we call Al techniques.

Program 1

Data Structures

Board A nine-element vector representing the board, where the elements
of the vector correspond to the board positians as follows:

1|2
41516
7(819

An element contains the value 0 if the corresponding square is blank,
1 if itis filled with an X, or 2 if it is filled with an O.

A large vector of 19,683 elements (3%), each element of which
is a nine-element vector. The contents of this vector are chosen
specifically to allow the algorithm to work.

Movetable

The Algorithm

To make a.move, do the following:
I. View the vector Board as a ternary (base three) number. Convertitto a decimal

numben

2. Use the number computed in step 1 as an index into Movetable and access the
vector stored there.

3. The vector selected in step 2 represents the way the board will look after the move
that should be made. So set Board equal to that vector.

Scanned by CamScanner



Comments
This program is very efficient in terms of time. And, in theory, it could play an optimal
game of tic-tac-tee. But it has several disadvantages:

* It takes a lot of space to store the table that speCIﬁcs the correct move to make
from each board position.

¢ Someone will have to do a lot of work specifying all the entries in the movetable,
e It is very unlikely that all the required movetable entries can be determined and
entered without any errors.

¢ If we want to extend the game, say to three dimensions, we would have to start
from scratch, and in fact this technique would no longer work at all, since 327
board positions would have to be stored, thus overwhelming present coniputer

memories.

The technique embodied in this program does not appear to meet any of ourrequirements
for a good Al technique. Let’s see if we can do better.

Program 2

Data Structures

Board A nine-element vector representing the board, as described for Pro- .
gram 1. But instead of using the numbers 0, 1, or 2 in each element,
we store 2 (indicating blank), 3 (indicating X), or 5 (indicating O).

An integer indicating which move of the game is about to be played;

Tum
1 indicates the first move, 9 the last.

The Algorithm

The main algorithm uses three subprocedures:

Make2 Returns 5 if the center square of the board is blank, that is, if Board[5]
= 2. Otherw:se thIS funcuon retums. any blank noncorner square
(2,4, 6, or 8).

Posswin(p) Returns O if player p-cannot win on his next move; otherwise, it

returns the number of the square that constitutes a winning move.
This function will enable the program both to win and to biock the
' opponent s win. Posswin operates by checking, one at a time, each
of the rows, columns and diagonals. Because of the way values are
numbered it can test an entire row (column or dlagonal) to see if it
is.a’ possxble win by multlplymg the values of its squares together.
If the product is 18'(3 x 3 x 2), then X can win. If the product is 5C
' (5 x5x%2), then O-can win. If we find a winning row, we determine
whlch element is blank and return the number of that square.

Scanned by CamScanner



1.3. WHAT IS AN Al TECHNIQUE? 1]

Go(n : . ,
(n) Makes a move in square n. This procedure sets Board[n] to 3 if
Turn is odd, or 5 if Tumn is even. It also increments Turn by one.

The algorithm has a built-in strategy for each move it may have to make. It makes the
odd-numbered moves if it is playing X, the even-numbered moves if it is playing O.
The strategy for each turn is as follows:

Tumn=1  Go(1) (upper left corner).

Tum=2 If Board[5] is blank, Go(5), else Go(1).

Tum=3 If Board[9] is blank, Go(9), else Go(3).

Turm=4 If Posswin(X) is not 0, then Go(Posswin(X)) [i.e., block opponent’s
win], else Go(Make?2). '

Turmn=5 If Posswin(X) is not 0 then Go(Posswin(X)) {i.e., winj else if Pos-

swin(O) is not 0, then Go(Posswin(0O)) [i.e., block win], else if
Board[7] is blank, then Go(7), else Go(3). [Here the program is
trying to make a fork.]

Tum=6 If Poéswin(O) is not 0 then Go(Posswin(O)), else if Posswin(X) is
not 0, then Go(Posswin(X)), else Go(Make2).
Tum=7 - If Posswin(X) is not 0 t.hen Go(Posswin(X)), else if Posswin(O) is
" not 0, then Go(Posswin(0)), else go anywhere that is blank.
Turm=8 If Posswin(O) is not 0 then Go(Posswin(OY)), else if Posswin(X) is
not 0, then Go(Posswin(X)), else go anywhere that is blank.
Turn=9 ~ Same as Tum=7.
‘y i
Comments

This program is not quite as efficient in terms of time as ’the first one since it has to
check several conditions before making each move. But it is a lot more efficient in
terms of space. Itisalso a lot easier to understand the program’s strategy or to change
the strategy if desired. Butthe total strategy has still been figured out in advance by the
programmer. Any bugs in the programmer’s tic-t_ac—toe playing skill will show up_\in
the program’s play. And we stiil cannot generalize any of the program’s knowledge to

a different domain, such as three-dimensional tic-tac-toe.

Program 2’

is identical to Program 2 except for one change in the representation

This program ‘ N
of tge board. We again represent the board as a nine-element vector, but this time we

n board positions to vector elements as follows:

assi
(8|34
115
6 |7

Scanned by CamScanner



12 )
CHAPTER 1. WHAT IS ARTIFICIAL INTELLIGENCE?

Notice that this nu. i B om. rmas

s lanms, &nd diagon:l?:s:]nlgooltslh&nbf)“udPn?duccs a l]lllgiC‘SLIUI}l:c: all the rows,
checking for a possibl s 2 s nlbull.lb. that we can simplify the process of
: : P e win. In addition to marking the board as »s are made, we
keep a list, for each player, of the squares in which he or s e, To mddb" -
bossible win for one pl » uare; ‘l'll w uc 1 1e or she has played. To check for a

: player, we consider each pair of squares owned by that player and
Fompute lhe difference between 15 and the sum of the two squares. If this difference
1S not positive or if it is greater than 9, then the original two squares were not collinear
and so can be ignored. Otherwise, if the square representing the difference is.blank,
a n_love there will produce a win. Since no player can have mor¢ than four squares at
a t_xme, there will be many fewer squares examined using this scheme than there were
using the more straightforward approach of Program 2. This shows how the choice of
representation can have a major impact on the efficiency of a problem-solving program.

Comments i

This comparison raises an interesting question about the relationship between the way
people solve problems and the way computers do. Why do people find the row-scan
approach easier while the number-counting approach is more efficient for a computer?
We do not know enough about how people work to answer that question completely.
One part of the answer is that people are parallel processors and can look.at several
parts of the board at once, whereas the conventional computer must look at the squares
one at a time. Sometimes an investigation of how people solve problems sheds great
light on how computers should do so. At other times, the differences in the hardware
of the two seem so great that different strategies seem best. As we learn more about
problem solving both by people and by machiritgs, we may know better whether the same
representations and algorithms are best for both people and machines. We will discuss

this question further in Section 1.4.

Program 3

Data Structures

A structure containing a nine-element vector representing the board,

BoardPosition e
a list of board positions that could result from the next move, and a
number representing an estimate of how likely the board position is
to lead to an ultimate win for the player to move.
The Algorithm

To decide on the next move, look ahead at the board positions that result frqm each
possible move. Decide which position is best (as described below), make the move that
n the rating of that best move to the current position.

leads to that position, and assig .
To decide which of a set of board positions is best, do the following for each of

them:

1. See if itis a win. If so, call it the best by giving it the highest possible rating.

Scanned by CamScanner



| 3. WHAT IS AN Al TECHNIQUE? 3

es the opponent could mzke next. See which of
ly calling this procedure). AsSsSume the opponent

cre

o<

2. Otherwise, consider all the mov

them is worst for us (by recursive
will make that move. Whatever rating that move has, assign it to the node we

considering.
3. The best node is then the one with the highest rating.

This algorithm will look ahead at various sequences of moves in order to find 2
sequence that leads to a win. It attempts to maximize the likelihood of winning, while
assumning that the opponent will try to minimize that likelihood. This algorithm is called

the minimax procedure, and it is discussed in detail in Chapter 12.

Comments

This program will require much more time than either of the othiers since it mus’ sezrch

a tree representing all possible move sequences before making each move. Butit is
big way: It could be extended to handle games

superior to the other programs in one very

more complicated than tic-tac-toe, for which the exhaustive enpmeration approach of

the other programs would completely fall apart. It can also be augmented by 2 variety of
d how to play them. For example, instead

specific kinds of knowledge about games an
of considering all possible next moves, it might consider only a subset 0

determined, by some simple algorithm, to be reasonable. And, instead of following each
series of moves untilone player wins, it could search fora limited time and evaluzts the

merit of each resulting board position using some static function.
Program 3 is an example of the use of an Al technique. For very small probiems,

it is less efficient than a variety of mor€ direct methods. However, it can be used o

situations where those methods would fail.

1.3.2 Question Answering

In this section we Jook at a series of programs
questions, also stated in English, about that text. This task
that it is more difficult now to statc formaily and precisely W
constitutes correct solutions to it. For example, suppose that

single sentence

that read in English text and then answer
differs from the last one in
hat our problem is and-what
the input text were just the

Russia massed troops on the Czech border.

Then either of the following question-answering dialogues might occur (and in fact

did occur with the POLITICS program [Carbonell, 19801):
Dialogue 1

Q: Why did Russia do this?

A: Because Russia thought that it could take
sending troops.

Q: What should the United States do?

Az The United States should intervene m

political control of Czechoslovakia by

ilitarily.

Scanned by CamScanner



14 . \ ‘
i CHAPTER ;. WHAT IS ARTIEICIAL IN'IY:’I.I,I(;'I:'N(,'l"i'

Dialoguc 2

‘e

Q Why did Russia‘do thig?
A . ; . . ,
Because Russia wanted 1o Increase its political influence over Czechoslovakia
Q: What should the United States do?
A: | The United States should denounce the Russian action jn the United Nutions,

In the POL_ITICS program, answers were constructed by considering both the input
fextand a separate mode] of the beliefs and actions of various political cnl'ilics. including
Russia. When the model is ch'angcd,{as it was between these two dialogues, the f;y.t;lcm’.';
answers also change. In this example, the first dialogue was produced when POLITICS

. was givﬁqn a model that was intended toEorrcspcnui o the beliefs of a typical American
. Conservative (Circa 1977). The second dialogue occurred when POLITICS wag given a
model that was intended to correspond to the beliefs of a typical American liberal (of
the same vintage). :
 The genecral point here is that defining what it means to produce a correct answer to g
‘question may be very hard. ‘USUally,'-qu‘estion-answcring programs define what it meang
~tobe an answer by ;hg procedure that ig used to compute the answer, Then their authors
appeal to other people to agree that the answers found by the program “make sense”
and so to'confirm the. model of question answering defined in the program. This is not
_ Completely satisfactory, but no better way of defining the problem has yet been-found,
. For lack of a better method, we. will do the same here and illustrate three definitions of

question ansWering,_each'with a corrés'ponding program that implements the definition,
In-order to be abje to compare the three programs, we illustrate all of them using the

following text:
M.ary.went‘ shopping for a new coat. She found a red one she really liked.
When she got it home, she discovered that it went perfectly with her favorite
dress. ‘

We will also attempt to answer-each of the following questions with each program:

Q1:  What did Mary go shopp‘ving for?
Q2:  What did Mary find that she liked?
Q3:  Did Mary buy anything? -

Program 1

This program attempts to answer questions using the literal input text. It simply

‘matches text fragments.jn the’ questions against the input text,

Data Structures

QuestionPatterns A set of templates that match common question fprms and produce
pattérns to be used.to match against inputs. Te.mplate_s and pattcm%
(which we call text patterns) are paired so tha.t if a ten:xp]ate matches
successfully against an input question then its assPCIa_;éd text pat-
terns are used to try to. find appropriate answers in the text. For

Scanned by CamScanner



ll

2-5. ‘4"]{47‘ }‘\~ ‘4-’\? (“) 7‘1!’_‘( ‘/‘!-l\,]kjj [1’,.-.'.\

examplo, il the remplate “Who did X V7 TRAIHSS 3 Pt Jusshion
then the toxt pattem "y s matchad |
value of 7 iz fiven as the apswar 10 1he QUashan.

DANI M INHNTRN ANt Inxe

Text The ihput text stored simply as @ long Sharmst AMMD.

Question The current question also Stored as a1 Sharmdier g

The Algorvithm

To answer a question, do the following:

N

1. Compare each element of QuestionPatterns against the

Quizstion and 1o 2l HhDs
that match snccessfully 1o generate 4 S21 0L X PAtiemns.

Pass each of these patterns through & subsHnonpProsess that FenaTatas AlIrnatinvg
forms of verhs so that, for example, “20” in a quastion Might mateh Twan AN

text. This step generates a new, expanded set 0f ToXI patrerns.

[

collest allThe o0 INNE ARSWIE.

J

3. Apply each of these rext patterns 1 Text, and

4. Reply with the set of answers just colleated.

Examples
Ql:  Thetemplate “What didx Y marches this quastionand TENSTARS Th IoXITANem
“Mary go shopping for z.” After the patrern-SubsTitution Step, s DAl =

dp A

expanded 1o a set of patrerns including “Maty zoes shopping forz.” and “Nian
went shopping for z.” The latter pattern marches The iNpuL 1oXT: The Droagmam,
o a convention that variables march the lonzest poassible IIMng up © &

usin
senténce delimiter (such as a period), AsSigns = the valuz, “anow coal” which

is given as the answer.
2. Unless the template sct is very large, allowing for the insertion of The nbEs al
“find” between it and the modifying phrase “that she liked,” the MIDTON D7 The
word “really” in the text, and the substitution of “she™ Tor “Mary.” thiz puasncn
is not answerable. IT all of these variations are : coountad for and The gueshion

can be answered, then the Tesponse is “aTed one.”

Q3: Sinccnoanswerto this question is contained inthe text, no answer will he Taund.

Comments

This approach 1s clearly inadequate to answer the Kinds of guestions neople couid
answer after reading 2 simple text. Even its ability 10 answer the MOst diTest QUISHIONS 35
delicately dependent on theexact form in which questions are stated and oh the vanations
that were anticipated in the design of the templares and the pattern substitunhons that

e s TN

the system uses. In fact, the sheer inadeguacy of this program to perform the inshk ma
make you wonder how such an approach tould even bz proposed. This Trogmam i
substantially farther away from bcing useful than was the initial pmgmm"w;‘innkmf
stoe. Is this just a strawman designed 1 make some athar technigque (ook
n? Ina way, yes. but it is worth mentioning that 'rh:nppm.;x:t: That

at for tic-tac
good in compariso

Scanned by CamScanner



16 CHAPTER 1. WHAT IS ARTIFICIAL INTELLIGENCE?

this program uses, namely matching patterns, performing simple text substitutions, and
then forming answers using straightforward combinations of canned text and sentence
fragmen‘t‘s located by the matcher, is the same approach that is used in one of the most
famous “Al” programs ever written—ELIZA, which we discuss in Section 6.4.3. But,

-as you read the rest of this sequence of programs, it should become clear that what we
mean by the term “artificial intelligence” does not include programs such as this except
by a substantial stretching of definitions.

Program 2

This program first converts the input text into a structured internal form that attempts

. . .
to capture the meaning of the sentences. It also converts questions into that form. It
finds answers by matching structured forms against each other. :

Data Structures
EnglishKnow A description of the words, grammar, and appropriate semantic
interpretations of a large enough subset of English to account for the
input texts that the system will see. This knowledge of English is
used both to map input sentences into an internal, meaning-oriented
form and to map from such internal forms back into English. The
“ former process is used when English-text is being read; the latter is
used to generate English answers from the meaning-oriented form

that constitutes the program’s knowledge base.

The input text in character form.
StructuredText . A structured representation of the content of the input text. This
‘structure attempts to capture the essential knowledge contained in
the text, independently of the exact way that the knowledge was
ctated in‘English. Some things that were not explicit in the English
text, such as the referents of pronouns, have been made explicit
in this form. Representing knowledge such as this is an.important
issue in the design of almost all Al programs, Existing programs
exploit a variety of frameworks.for doing this. There are three
important families of such. knowledge representation systems: pro-
duction rujes (of the form “if x then ), slotzand-filler structures,
4nd statements in mathematical logic. We discuss al] of these meth-
ods later in substantial detail, and we look at key questions that need
to be answered in order to choose a method for a particular pro-
gram. For now though, we just pick one arbitrarily. The ong we’ve
chosen is a slqt-and-filler structure. Ferexample,.the sentence “She
found a red one she really liked,” mightbe represented.as shown in
Figure 1.2. Actually, this is a simplified description.of.the contents.
of the sentence.. Notice that it is not. very explicit. about temporal
relatiorships, (for example, events,are just marked, as.past -tense)
nor have we madg any real attempt to represent.the, meaning of the
qualifier “really.” It;should, however, illustrate the, ba_gjg’fon;n that
representations such-as this.take. One of the key ideas.in this sort

/

InputText

Scanned by CamScanner



13. WHAT IS AN Al TECHNIQUE? 7
I

Evenr2
instance : Finding
lense : Past
agent : Mary
objecr : Thingl
Thingl
tsiance - Coar
color : Red
Evenr2
insrance : Liiing
tense : Past
modifier : Much
object : Thingl

Figure 1.2: A Structured Representation of 2 Seatence ;

of representation is tha: entities in the representation derive therr
meaning from Lh’ir conneciions to other eatities. In thf‘ ﬁcure, oaly
the entities defined by the seatence are shown. Buto :‘:ntitiﬂf
comresponding to concepts that the program knew azbout bcfo
read this sentence, also exist in the representafion and can be re-
ferred to within these new structuress. In this example. for instance,
we refer 1o the entities Mary, Coar (the general concept of z coat of
which Thingl is a SD"“‘I‘: insiznce), Liling (the general concept of
liking), and Finding (the gen eneral concept of finding). i

InputQuestion The input question in character form.
StructQuestion A structured representation of the conteat of the wser’s queston.
content of

- = _
2 structure 1s the same as 52 o used to IEOISsSn the

the input texi.

The Algorithm

Convert the InputTexx into structured form usin ;
Know. This may require considering several diiersnl
of reasons, including the fact that English wordsc= mbigu .
structures can be ambiguous, and pronouCs MaY NaVe SEVer= ‘

Then, to answer a question. do the following:

g cmin meine the knowledge conmined ia

1. Convert the question 10 s?*u“*ur; form. 2gzin using the kvo rn- sdzz ~‘~;f[b¢
EnglishKnow. Use some special ge: in the structure to indicae e ot e
hs answer. This marker will often correspond

structure that should be retumed as U

Scanned by CamScanner



18 CHAPTER |. WHAT IS ARTIFICIAL INTELLIGENCE?

to the occurrence of a question word (like
The exact way in which this marking gets done depends on the form chosen for
representing StructuredText. If a slot-and-filler structure
a special marker can be placed in one or more slots
however, markers will appear as variables in the lo

“who” or “what™) in the sentence,

» such as ours, is used,
. If a logical system is used,
gical formulas that represent

the question. -
2. Match this structured form against StructuredText.

Return as the answer those parts of the text that match the requested segment of
the question.

Examples’

Q1:  This question is answered straightforwardly with, “a new coat.”
Q2:  This one also is answered successfully with, “a red coat.”

Q3:  This one, though, cannot be answered, since there is no

direct response to it in
the text. '

Comments

This approach is substantially more meaning (knowledge)-based than that of the first
program and so is more effective. It can answer most questions 10 which replies are
contained in the text, and it is much less brittle than the first program with respect to
the exact forms of the text and the questions. As we expect, based on our experience
with the pattern recognition'and tic-tac-toe programs, the price we pay for this increased
flexibility is time spent searching the various knowledge bases (i.e., EnglishKnow,
StructuredText). _A__»

One word of warning is appropriate here. The problem of ‘producing a knowledge
base for English that is powerful enough to handle a wide range of English inputs is very
difficult. Itis discussed at greater length in Chapter 15. In addition, it is now recognized
that knowledge of English alone is not adequate in general to enable a program to
build the kind of structured representation shown here. Additional knowledge about
the' world with which the text deals is often required to support lexical and syntactic
disambiguation and the correct assignment of antecedents to pronouns, among other
things. For example, in the text

Mary walked up to the salesperson. She asked where the toy department
was.

it is not possible to determine what the vrord “she” refers to without knowledge about the
roles of customers and salespeople in stores. To see this, contrast the correct antecedent
of ““she” in thaf text with the correct antecedent for the first occurrence of “‘she” in the
following example:

Mary walked up to the salesperson. She asked her if she needed any help.

Scanned by CamScanner



1.3. WHAT IS AN A) TECHNIQUE

-

In the simple case illustrat
correct answers to our first two

N
D
N

- Y £’ s ”
. |r:’our un;t buying example, it is possible
estons without any additior f

or coats, and some s iti informa . b
e «ans thc.fact that some such additional information may be necesszry to sene
|W v N > b4 ] "’ ‘ V’M‘. .
o onion er.mg has alrecady been tHustrated by the failure of this program v find 2
of'.[he meaqgcsnofn 3. Thus we see that although extracting z strucaures FEp T g
Ing of the input text is an Improvement over the mezning-free zomoroacs r‘
Program 1, it is by no meun« | ient i ke 2 a0 evers g
sophisti : d > DY no means sufficient in general, So we need to look 2 20 even s
ls % - . + - 4 {
phisticated (i.e., know!cdgc-nch) approach, which is what we deo next. '

- f . 4
al l.’ﬂ)‘z/]%yf:;; .

3
.

¥

Program 3 '

This program converts t
of th

he inputtext into z structured form thzt contzinsthe mesnins
€ sentences in the text, and then it combines that form with other strustured form

that describe prior knowledge about the objects and situations involved in the ezt ‘

by i\\\

answers questions using this augmented knowledge structure.

Data Structures

WorldModel] - A structured representation of background world knowled

structure contains knowledge about objects, actions, zn4d situzrion

that are described in the inputtext. This structure is wied to constrc
IntegratedText from the inputtext. Forexzmple, Figure | 3 shoms 277
example of a structure that represents the system’s knowled
shopping. This kind of stored knowledge about sterentypical f:-’a’:‘

-

is called a scripr and is discussed in more detzi] in Section 102
The notation used here differs from the one nomizlly used in the

literature for the sake of simplicity. The prime notztion éif«.-:::':,-‘
an object of the same type as the unprimed symbol thar may or may
not refer to the identical object. In the czse of our tzxt. for r::_z::_:i':‘

alternative paths through the script. '
EnglishKnow Same as in Program 2.

InputText The input text in character form.

3
8.
:“If
5
=
&5
i
-
|
\

IntegratedText A structured representation of the knowledge containe:
put text (similar to the structured description of Program 2) :_‘
combined now with other background, related knowledge.

InputQuestion The input question in character form. ‘

StructQuestion A structured representation of the question. ‘

The Algorithm '

Convert the InputText into structured form using both the kno'fleﬂge‘ comzinid'm
EnglishKnow and that contained in WorldModel. The number of possible S{m:.-aﬂai
will usually be greater now than it was in Prograrr} 2 because s0 much more kﬂOM%E»
is being used. Sometimes, though, it may be possxb.le to consider fewer possibilities by{
using the additional knowledge to fiiter the altemnatives.

Scanned by CamScanner



CHAPTER , '
l. WHAT is ARTIFICIAL INTELLIGENCE »

Shopping Scnipt.
roes. C (customer), S (salesperson)

ops. M (merchandise), D (dollars)
xauon: L (a store)

™
'0.
[ 3"

I.Centers L

1

2. C begins looking around

' | l
3. C looks for a specific M 4. C looks for any interesing M

'

5 C asks S for help
L

I '

7.C finds M’ B.Cfailstofind M

| i - l
r 1 12. goto step 2

9 C leaves L 10. C buys M’ 11. Cleaves L

/

13. C leaves L.

l

14. C takes M’

Figure 1.3: A Shopping Scnipt

Scanned by CamScanner



1.3. WHAT IS AN Al TECHNIGUE?

4 .

To answer a question, do the following:

-
-

1. Converst the question o structured form zs in Program 2 bus use WorkdModel i

-

A

A

N
(S}
Yoy

necessary to resolve an guities that may asise.

2. Maich this structured form agzinst IntegratedText

=

G | ' ¢ the anews | P & 1 3
3. Retum zs the answer thowe parts of the text that mzich T reguesiet segmet of

-

] 2
the guestion.

Examples
Ql: Same as Program 2.
Q2: Szme as Program 2.
Q3: Nowthi

(S}
vy
- ;(,?
i
&
O
3
N
-]
\J

text, and because of the Jzst sem

P

s e -z g P - -, Z s e P
be answered. The shopping script is Insizntizeed h

. i S .. o
emtence, the peth trough uizp Lol e sl 5

z . -
=

A

O 0T O

v

- e i . -
e representation of tns o2 v oen ne sorpt

= : e 2 3 2 s T
ihe strocuge l».,‘?.;’;::::::g the =4 co=t (DeCEsT

G

—
- ) :
=ts tzk=n T;-c,-—f E:(j the t=xt (;r::‘-; =
W:—fi—pv‘
.

o= :
g
= _

& L e

3 aes
e e e P T
is whzt got tzk=n homs). Afer the script hes Degn mEszmlizs ed, Inte
-~ - I T T e o
¢ bt thzt =2 nol GESTIDES

& G o - o T o =1 = 7, L
ns severzl evenisInzl zre tzezn Iroin 02 50T
o~

- . - - - - o &
— g ¥z P Lo brrn e Yo LT R
> > Z 1 Tl vont 2s e sz i00r C LD
=

sl e
2 - ‘l'
i .’.A—nlr..)- LS, ILZ 2 e
e 2 - -
SOOnE SIS bx‘.ﬂf_.__...v Ared coat

——n

7. . 4. oo <3 4 ; J -4 = =z b 1
vding the event “Mary buys e red cozt (oM 5220 100of

e T S
T P s

o cither of the first two becanse it exploits more

>
fa
-

P r-l -
-t ot Gral = in 2ach of the olnsr Ua0 SSC0S0cEs W IS

el st T %
knowledze. Thus it, like the finzl progzramin

24
(=3
s = -
- gy f aete 2o e =1l AT te —_— e Pore momm = < - e -
. — = < e materier 15 Lot . ] i tear—r 'S 5 . e y = . - =
examined, 1S €Xploiling Wils 't =8 Al tecomigoes, D 222 = few cEZveas aaT 18
- wr the e o have eynloited in this program 22 O zdeon=e Z
TC-.A-— E_’:ﬂa = INICESS "W 128 LASRiiiaas n L__...-S il = A - == itk
o - - —_— P e ® BImmem e Fema® aT T —— - 5
= e ™ = ts i 2T el 17 4 'R 'y m‘, o < oo T
m.'ht..:fﬁ English _.z.-;,.io.. ZOTAEINZ. ii T DOt =z T Z e
- -

his prozram is 2 general rezsoning (1t
1 M 1 : = ~ 7 . -
answer is not contained explicilly even 10 Iegrazedlext, bot that answer
e | R
there. Forezzmple, given T2 1230

i STANTRE ] ¢
SZIKFC:.::’ MOoTng Mery wenl s0C0PI0E
. £t
ek 1.9% oot bald of her
but he coalicn | 25 00 Ol s¥A

-

- L ] L. X - -
it should be possible to answer Tie GUSSICH

- La? . pe- g ey Fae?
Ry o 15— _1‘!‘_—-' « hereter vo20 T2
¥ L S s - b—l -

-

v s

Scanned by CamScanner

. 4 = . e
ﬁ&’ﬁ}mﬂwzfz%? =n (e regnesca

" _— - PO
<hoooinz. Her brother tned 1o &2 B L



22 ‘ CHAPTER 1. WHAT IS ARTIFICIAL INTELLIGENCE?

But to do so requires knowing that one cannot be two places at once and then
using that fact to conclude that Mary could not have been home because she was
shopping instead. Thus, although we avoided the inferencé' problem temporarily by
building IntegratedText, which had some obvious inferences built into it, we-cannot

~ avoid it forever. It is simply not practical to anticipate all legitimate inferences. In later
chapters, we look at ways of providing a. general inference mechanism that could be
used to support a program such as thé last ong in this series.

This lirmitation does not contradict the main point of this example though. In fact, it

115 additional evidence for that point, namely, an effective question-answering procedure
must be one based soundly on knowledge aind the computational use of that knowledge.
The purpose of Al techniques is to support this effective use of knowledge.

1.3.3 Conclusion

We have just examined twoseries of programs to solve two very differén't problems. In
each series, the final program exemplifies what we mean by an Al technique. These two
programs are slower to execute than the earlier ones in their respective series, but they

illustrate three important Al techniques:

earch—Provides a way of solving problems for which no more ,_di[e’crtrapproggh

is available as well as a framework into.-which any diréct techniques that are
available can be.embedded. b e

| 3/4;6'of Ignowledgeﬁl’\rovides a way of solving complex problems by explojting
(he structures of the objects that are involved. | |
ACtUTCs OF -

o/kbstractig,anrovides a way of separating important features and variations from
s arore——t— . e 206 s < - == . - T "
the many_unimportant ones that would otherwise. overwhel mhqumgg_q_g_;ss._l

For :he solution of hard problems, programs that exploit these techniques have
several advantages over those that do not. They are much less fragile; they will not
ke thrown off completely by a small perturbation in their input.. People can easily
uriderstand what the-program’s knowledge is. And these techniques can work for large

problems where more direct methods break down.
We have still not given a precise definition of an Al technique. It is probably not

pussible to do so. But we have given some examples of what onc is and what one 1S
‘not. Throughout the rest of this book, we talk in great detail about what one is The
definition should then become a bit clearer, or less necessary. '

Scanned by CamScanner



1.5  Criteria for Success
One of the most important questions to answer _i.n.a‘r;l‘y' scientific or engineering research
pgdjé&t is “How will we know if we have ‘succeeded?” Artificial intelligence is no
cxception. How will we know if we have constructed a machine that is intelligent? That
question'is at least-as hard as the unanswerable question “What is intelligence?” But
can we do anything to measure our progress? SRR

In 1950, Alan Turing proposed the following method for determining whether a
machine can think. His method has sirice become known as theé Turing test. Toconduct

Scanned by CamScanner



1.5. CRITERIA FOR SUCCESS

this test, we need WO people and the machine to be ey;
role of the interrogator, who j
person. The interrogator can ask questions of either the
lyping questions and receiving typed responses. However, t
only as A and B and aims to determine which is the pers
T_hc goal of the machine is to foo| the interrogator into believing that it is the erso
If thc'muchinc succeeds at thjs, then we will conclude that the machine can thini Tl?e
machine is allowed to do whatever it can to fool the interrogator. So, for exam;:;]e Af
asked the question "}{ow muchis 12,324 times 73,9817 it could wait several minu,tes
and then respond with the wrong answer [Turing, 1963]. S

The more serious issue, though, is the amount of knowledge thaf a machine would
need to pass the Turing test. Turing gives the following example of the sort of dialogue
a machine would have to be capable of:

Person or the computer by
he interrogator knows them

Interrogator: In the first line of your sonnet which reads “Shall I compare tﬁee to
a summer’s day,” would not “a spring day” do as well or better?

A: It wouldn’t scan. :

Interrogator: How about “a winter’s day.” That would scan all right.

A: Yes, but nobody warnts to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you-of Christmas?

A: In a way. _ _

Interrogator: Yet Christmas is a winter’s day, and I do not think Mr. Pickwick
would mind the comparison.

A: T'don’t think you're serious. By'a winter’s day one means a typical

winter’s day; rather than a special one like Christmas.

It will be a long time before a computer passes the Turing test. Some people believe
none ever will. But suppose we are willing to settle for less than a complete imitafion
of a person. Can we measure the achievement of Al in-more restricted domains?

Often the answer to this question is yes. Sometimes it is possible to get a fairly .
precise measure of the achievement of a program. For example, a program can-acq}lire
a chess rating in the same way as a human player. The rating is based on the ratings
of players whom the program can beat. Already programs hgve acquired ch(?ss ratings
higher than the vast majority of human players. For othgr problem dor'nvalns, a lAess
precise measure of a program’s achievement is possiple. Fgr example,{DE.NDRAL is a
program that analyzes organic compounds to dctenmng thgxr structure. It is hgrd to get
a precise measure of DENDRAL's level of achif.:'vé_:mc;nt co_m-parec; to human cherr;ls;ts,
but it has produced analyses that have been published as original resgarch results. Thus
it is certainly performing competently. _ :
it 15; dther)t,eihnica] dogmainsli it is possible to compare the time it ta.kes for a_progn;;n
to complete a task to the time required by a person to'do the same 'thm'g.'f;;:;;fm;
there are several programs in use by computer companies to conﬁg;r;: par;;:esc rosrains
to customers’ needs (of which the pioneer was a prqgran; ('-:aue:ired)llmours P s lled
typically require minutes to perform tasks that previous yreq !

Scanned by CamScanner



2 e guig s | ;
6 CHAPTER 1. WHAT IS ARTIFICIAL INTELLIGENCE?

engineer’s time. Such programs are usually evaluated by locking at thé bottom line—
whether they save (or make) money.

_For many everyday tasks, though, it may be even harder to mieasure a program’s
performance. SUP_PO'SC,.'fOF example, we ask a program to paraphrase a newspaper story.
For problems suchas this. the best test is usually just whether the program responded in
a way that a person could have. _ o '

If our goal in writing a program is to simulate human performance at a task, then the
measure of success-is the extent to: which the program’s behavior corresponds to that
performance, as measured by various kinds of experiments and protocdl analyses. In -
this we do not simply want a program that does as well as possible. We want one that
fails when people do. Various techniques developed by psychologists for comparing
individuals and for testing models can be used to do this analysis. .

We are forced to conclude that the question of whether a machine has intelligenc
or can think is too nebulous to answer precisely. But it is often possible to construct
a computer program that mects some performance standard for a particular task. That

does not mean that the program does the task in the best possible way. It means only
nderstand at least one way of doing at least part of a task. When we s.et ?ut to
should attempt to specify as well as possible the criteria for
ogram functioning in its restricted domain. For the moment,

that we u
design an Al program, we
success for that particular pr
that is the best we can do.

Scanned by CamScanner



{ )'~\ r.J {) l‘{.)t ¢ r:‘ C"% r«v\} : } b\ (
LA S Lop p P
e - e O ¢ Poslen .
36 - Mo a Q. (ﬁl a&_ ¥
C‘[L.“)FER '-‘)'9 O A C.-A Mo

A AN
N PROBLE EMS PROBLEM SPACES, AND SEARCH "
b T 3

{. Production Systems

nce Search f)r;ux $.the cor
Al ])l()bl‘lull\ in
P mducuou
given below,
describe whnl A

re of many

mlelltg,t.nt processes, it is useful to stru
cture
a way that ﬂtulntlles

systems _lcscnbm& and performmg the search _p_rocess
Do l)f;)Vulc such structures. A dcﬁmtron of a productton system is

s hot be confused by other uses of the word production, such as to
S done in factorijes. Apma’ucnon System consists of:

A .
t/’-:—-zﬂ-—(l! ml&." ‘UlCl...?mjjgtm;, of a_left side (a pattern) that dete[mm es. the

2pplict lbuly of the Nlh and aright sxde thul describes the operation to be_pgr_fp;m:.zd
if the rule i ¢ is ‘.U’l"-d . v

Sy ———

' One or more l\nowledge/dmabascs that commn whatever. information is appropri-
ate-for the parttcurr tasL Some p:uts of the database. may-be-permanent, while
othu T parts of 1t mny pcltam only 10 thc c_solution of the current problem The
ml‘ormglmn in these dalabases may be st structured in any appropriate way.

\/K control strategy that specifics the order in' wlnch the rules will ‘be compared
T ——
to the database and a way. of rcsolvmg the conflicts that arise when several rules
match at once.

1

'\[é___l_e_gt_p_ﬂllcr

So far, our deﬁmnon of a production system has been very general. It encompasses
a great many 'systems, including our descriptions of both a chess playerand a water jug
problem solver. It also encompasses a family of genéral production system interpreters,
including:

e Basic production system languages, such as OPS5 [Brownston ef al., 1985] and
,.-ACT* [Anderson, 1983].

e More complex, often hybrid systems called expert system shells, which provide
complete (relatively speaking) environments for the construction of knowledge-

based expert systems. . .

e General problem:solving architectures like SOAR [Laird et al., 1987], a system
| based on a specrﬁc set of cognitively motlvated hypotheses about the nature of

problem solvmg

All of thesc systems provrde the overall architecture of a production system and
allow the' programmer to write rules that define pamcular problems to be solved We
dtscuss productron systcm rz’ues further in Chapter 6. - -

Wc have now seen that' w&lem, we st first reduce, it to one
for wjlgh a precrse statement can be > given. This can be done by defining the problem s

state_spacc (mcludmg the start and goal states) and a set of operators for” moving in

:hat bpace The problem can then be solved by searchmg for a path through thfe space
from an initial statc to a goal stater [l:he Nrocess. of solvmg the problem can usefu

1y be

3This convention for the usc of left and right sides is natuml for forward rules. As we wrll see later, many

backward rule systems reverse the sids.

Scanned by CamScanner



2.2. PRODUCTION SYSTEMS 37

modeled as a production system. In the rest of this section, we look at the problem of
choosing the appropriate control structure for the production system so that the search

can be as efficient as possible.

2.2.1 Control Strategies

So far, we have completely ignored the question of how to decide which rule to apply
n.ext during the process of searching for a solution to.a problem. This question arises
since often more than one rule (and sometimes fewer than one rule) will have its left
side match the current state. Even without a great deal of thought, it is clear that how
such decisions are made will have a crucial impact on*how quickly, and even whether,

a problem is finally solved.

o 7115 -ﬁf‘" requirement of a good control strategy is that it cause motion. Consider

y  again the"water jug problem of ‘the Tast section. Suppose we implemented the

simple control-strategy of starting each time at the top of the list of rules.and

choosing the first applicable one. If we did that, we would never solve the

problem. We would continue indeﬁnitély filling the 4-gallon jug with water.
Control strategies that do not cause motion will _névér lead to a solution.

e The second requirement of a good control strategy is that it be systematic. Here is
another simple control strategy for the water jug problem: On each cycle, choose
at random from among the applicable rules. This strategy is better than the first.
It causes motion. It will lead to a solutiorn eventually. But we are likely to arrive
at the same state several times during the process and to use many more steps than
are necessary. Because the control strategy is not systematic, we may explore
a particu},ar useless sequence of operators several times before we finally find a
solution.” The requirement that a control strategy be systematic corresponds to
the need for global motion (over the course of several steps) as well as for local
motion (over the course of a single step). One systematic control strategy for the
water jug problem is the following, Construct a tree with the initial state as its
root. Generate all the offspring of the root.by applying each of the applicable
rules to the initial state. Figure 2.5 shows how the tree looks at this point. Now
for each leaf node, generate all its successors by applying all the rules that are

appropriate. The tree at this point is shown in Figure 2.6.* Continue this process

“until some.rule produces a goal state. This process, called breadth-first search,

can be described precisely as follows.

Algorithm: Breadt‘h-‘First Search _
1. Create a variable called NOD_E-LIST and set it to the initial sta\te..

2. Until a goal state is found or NODE-LIST is empty do:

(a) Remove the first element from NODE-LIST and call it E. If NODE-LIST

was empty, quit.

4Rules 3. 4. 11, and 12 have been ignored in constructing the search tree.

Scanned by CamScanner



38 CHAPTER 2. PROBLEMS, PROBLEM SPACES, AND SEARCH

(0, 0)

7 Figure 2.5: One Level of a Breadth-First Scarch Tree @
0,0)
(450) | 10.3)]
@3 o0 |3} 43| |00 |30

Figure 2.6: Two Levels of a Breadth-First Search Tree

(b) For each way that each rule can match the state described in £ do:

i. Apply the rule to generate a new state.
ii. If the new state is a goal state, quit and return this state.
iii. Otherwise, add the new state to the end of NODE-LIST.

hel i e
~asingle branch_ .of the tree until it ylelds a solution or untll a d(.cmon to terniinate the
' path is made. It maKes sense to'terminate a path if it reaches a dCud end, produces a

~ previous state, or bci}p es longerthan'some prespecified “futility” limit. In such a case,
backtracking occurs. {The most recently created state from ‘which alternative moves are

vaxlablf' will be rcv:sned ited and a new state will be c:cated‘%’l‘:llg_s form of backtracking is
callcd chronological. backtr ac&mg because the order in which steps are undone depends
only on the temporal sequence in ‘which the steps were onnlmlly made. Specifically,
the maést recent step is always the first to be undone. This form of backtracking is what
'is usually meant by the simple term backtracking. But there are other ways of retracting
“steps of a computation, We discuss one important such way, dependency-directed
backtracking, in Chapter 7. Until then, though, when we use the termy backtracking, it

means chronological backtracking.
The search procedure we have just described is also called dcprh -first search. The

following algorithm describes this precisely.
Scanned by CamScanner

(4, Oy 0, 3) O,/

-



2.2. PRODUCTION SYSTEMS =

©,0)
(4,0,

e

(4, 3)

Figure 2.7: A Depth-First Search Tree

Algorithm: Depth-First Search

1. If the initial state is a goal state, quit and return success.
2. Otherwise, do the following until success or failure is signaled:

(a) Generate a successor, g of the initial state. If there are no more successors,
signal\ailure, . N T
(b) Call Depth-First Search with E as the initial state.

(c) If success is returned, signal success. Otherwise continue in this loop.

r

Figure 2.7 shows a snapshot of a depth-first search for the water jug problem. A
comparison of these two simple methods produces the following observations.

Advantages of Depth-First Search

of Depth-first search requires less memory since onl‘)'":t‘hg;qggggﬁ_on the current path
Lﬁ‘re stored._This contrasts with breadth-first search, where all of the tree that has

'_s-ofﬂfar been generated must be stored.

By chance (or if care is taken in ordering the alternative successor states), depth-
“first sca'rch'r‘n'a"y find a solution without examining much of the search space at,
1L This contrasts with breadth-first search in which all parts of the tree must be ™~
TXamined to level n before any nodes on level n+ 1 can be examined. This is
particularly significant if many acceptable solutions exist. Depth-first search can

stop when one of them is found.

Advantages of Breadth-First Search

e Breadth-first search will not get trapped exploring a blind alley. This contrasts
with dcpth—ﬁfst searching, which may follow a single, unfruitful path for a very
long time, perhaps forever, before the path actual_ly terminates in a state that has
no successors. This is a particular problem in depth-first search if there are loops

Scanned by CamScanner



N et L T ~

40 ' ,
- CHAPTER 2. PROBLEMS, PROBLEM SPACES, AND SEARCH

ie., . . - .
i N adstale has a successor that is also one of its ancestors) unless special care is
pended to test for such a situation. The example in Figure 2.7, if it continues

always choosing the first (in numerical sequence) rule that applies, will have
exactly this problem.

+ o II there is a solution, then breadth-first search is  puaranteed.to.find it._ Furthermore,
_ILE ere are multiple solutions, then a minimal solution (i.e., one that requires the
minimum number of steps) wili be found. This is guaranteed by the fact that longer

paths are never explored Gntil all shorter ones have already been examined. This

contrasts with depth-first search, which may find a long path to a solution in one
part of the tree, when a shorter path exists in some other, unexplored part of the
tree.

Clearly what we would like is a way to combine the advantages of both of these
methods. In Section 3.3 we will talk about one way of doing this when we have some
additional information. Later, in Section 12.5, we will describe an uninformed way of
doing so. :

For the water jug problem, most control strategies that cause motion and are sys-
tematic will lead to an answer. The problem is simple. But this is not always the case.
In order to solve some problems during our lifetime, we must also demand a control
structure that is efficient.

Consider the following problem.

% he Traveling Salesman Problem: A salesman has a list of cities, each
of which he must visit exactly once. There are direct roads between each
pair of cities on the list. Find the route the salesman should follow.for-the
shortest possible round trip that both starts and finishes.at any.one of the

e
cities.
A simple ion-causing-and systematic_control structure could, in prnciple, solve

this problem. It would simply explore all possible paths.in.the tree and returmn the.one

with the shortest length. This approach will even work in practice for very short lists of
cities. But it breaks down quickly as the number of cities grows. If there are N cities,
then the number of different paths among themis1-2---(N—1), or (N— 1)L .The time

e e

t_ggzc,a;p_,iﬂcz_a_,s_i!l&]f,l??ﬁ _L;_.suRyopomonaI_to N. So the total time. required to perform this

A% T T = R R A AP

"search is proportional to N!. Assuming there are only 10 cities, 10! is 3,628,800, which
is a very large number. The salesman could easily have 25 cities to visit. Jo solve this
problem take.more time than_he would be willing to spend. This-phenomenon is
called combinatorial explosion. To combat it, we need a new control strategy.

“~We can beat the simple strategy outlined above using a technique called branch-
and-bound. Begin genérating complete paths, keeping track of the shortest path found
so far. Give up exploring any path ‘as soon as its partial length becomes greater than
the shortest path found so far. Using this technique, we are still guaranteed to find the
shortest path. Unfortunately, although this algorithm is more efficient than the first one,
it still requires exponential time. The exact amount of time it saves for a particular
problem depends on the order in which the paths are explored. But it is still inadequate

for solving large problems.

Scanned by CamScanner



2.2. PRODUCTION SYSTEMS 41

o § . Ineear 248
M.Z Heuristic Search  ( neodegk NI by i 3

In order to solve many hard g@pﬁm&WiS&ﬂ;MQmeromise
the rfwmﬂﬁmgi@h@ﬂ%m%m,éﬂgWLQQQQn.s,Nt.LU__C}__@ control structure that-
is no longer guaranteed tofind the best answer.buf.that will Imost always find a very
~g00d answer. Thus we introduce the idea of a heuristic.? 'ﬁ heuristic is a technig
_th"at'i'i"riipi"clvfé_s__th_ﬁfﬁdency--of—a--scarch;processh possibly by sacrificing claims of
ides—They are good to the extent that they

-‘Ef‘i‘pmgleteness. Heuristics are_li
point in generally interesting directions; they are bad to the extent that they may miss

B Ly

points of interest to particularindividuals) Some heuristics help to guide a search process

without sacrificing any claims to completeness thaf the process might previously have
may occasionally cause an excellent path

had. Others (in fact, many of the best ones)

to be overlooked. But, on the average, they improve the quality of the paths that are
explored.7Using good heuristics, we can hope to get good (though possibly nonoptimal)
solutions to_hard probléms, such as the traveling salesman, in less than exponential
time. There are somie good general-purpose heuristics that ‘are useful in a wide variety
of problem domains. In addition, it is possible to construct special-purpose heuristics

ial-
that exploit domain-specific knowledge to solve particular problems.”
One example of a good genergl_;gggpgsg;@qristic that is useful for g_xgigtz__of
combinatorial problems is the nearest neighbor heuristic, which works by selecting the

locally superior aiternative at each step. Applying it to the travelﬁiﬂr;lg salesman problem,

-we produce the £olfowing procedure:

1. Arbitrarily select a starting city.

2. To select the next city, look at all cities not yet visited, and select the one closest

to the. current city. Go to it next.
3. Repeat step 2 until all cities have been visited.

| . 3
_This ' ecutes-n timE Egg(_){tional to N?, a .sig' nificant improvement over
N!, and itis possible to prove an upper bound on the error it incurs.. For general-purpose
“heuristics, such as nearest neighbor, it is often possible to prove such error bounds,
which provides reassurance that one is not paying too high a price in accuracy for speed.

In many Al problems, however, it is not possible to produce such@“asglifiﬁ'g bounds.
This is true for two reasons:

This procedure ex

+ For real world problems, it is often hard to measure precisely the value of 2
particular solution, Although the length of a trip to several cities is a precise
ponse to such questions as “Why

e ——

notion, the appropriateness of a particular res

has inflation increased?” is much less so.
e For real world problems, it is often usefu I to introduce heuristics based on rela-
fively unstructured knowledge. It is often impossible to define this knowledge 1n

“such a way that a mathematical analysis of its effect on the search process can be

performed.
» which is also the

tered when

meaning “t0 discover,’

SThe word heuristic comes from the Greek word heuriskein, ;wh
heurika (for*‘I have fo_l_md ), ut

origin of eureka, derived from Archimedes’ reputed exclamation,
he had discovered a method for determining the purity of gold.

Scanned by CamScanner



5 = = - p - » alvhraioh s}
ihere ame many heansncs thar, althoueh thev are

-

o=y e o P » ——c T3C ] 2 .
ne1ghbor heurnistc, are nev eless useful in 2 wide varieny

141 1n 4 LIaIiS 7. i L ol
-\\—»—-"9»;---‘ 0—----\ - - i = . o e - T} £ 17 -
QOO T 138X Of dzsoovernr ng L'l;i'.-"S:lﬁ:; 10€3aS In some specified area. [The followine
- —i ] = - OO 3 = ' -
- bevnistac [Lenzt, 1583b)] is often useful:

o , - -
F thiwr 2 2 ingoresiine Fanstane oF tan arcie o = & A lanl o wrdea
i IAAT 1S Zn mISTesang unclion O two arcurmsenis 7ix. v). look 2zt whar
. e e =i -— = —

- e N o - wd mtirea
sl L Tl ATgUments are iaencai

- =

In the domazin of mathematics, this heuristic leads 10 th
.= —_— Tl 2~ T e thea Az corvaera —
the mulnphcationf '3:291 and 1t leads 10 the discoverv o

Tancnon of set union. In less formzal domains. thissame b
2

of imrospection if f is the functon coniemplate or it leads to the noton of suicide if f is
the funcoon kill
Withour heeristics, we would become hopelessly ensnaried in a combinatorial ex-
plosson. This 2lone might be a sufficient argument in favor of their use. But there are
3 4 |

e Rzrelv do we actuaily need the optimum solution; 2 good zpproximation will

asually serve very well Infacy there ic some. evidence That people. when they
solve problems. are not optimizers but rather are sarigficers [Simon, 1981]. In
other words, they sesk any solution that satisfies some set of requiremen:s aad-es

soon as they find one they quit. A good example of this is the search for a parking
space. \ics:z people stop as soon as they find 2 fairly good space. even if there

might be 2 slightly better space up ahead

o Although the approximanions prodnced by heunistics may not be very good in the
rSI case, worst cases rarely agise in the rea! world. Forexample, although many

oT2 "*.' are ot scparable (or even nearly so) ) and thus cannot be considered as 2
ST O s*:all problems rather than one large one. a lot of graphs describing the real

world are ®
e Trving o understand why a henn_stic " orks or why it doesn’t work. often leads

g
H

%
%
E-
1

Onec of ihe best descriptions of the m«.pou._ﬂce of L“fh,"lcuf.‘( in solving interesting

oohlems :‘:),Lg‘;, 1o Snive It [Polya, 1957]. Althoughthe focus of the book 1s the solunon
of mathemarical problents, many of the techniques 1t describes are more gen eraily

applicable. Fc’ example, given a problem to soive, look for a similar problem you
have solved before. Ask whether vou can use either the soluticn of that preblem or the
method thar was used te obtain the solution to help solve the new problem. Polya’s
::'ri; serves as an excellent guide for people who want to become better problem
solvers. Unforiunately,.it is not a panacea for Al for 2 couple of reasons. One is that
i mf"#i on Buman abilities that we must first understand well encugh to build nto
proeram. For example, many of the problems Polya discusses are geometnic ones in
wihiach once an aﬁrmy.._-- picture is drawn, the answer can be seen immediately. Butto
zxplon ~-«+ :niques in programs, We must develop a good way of represent ting and

manipulating desmmms of those figures. Another is that the rules are very general.

1

For z-guments in support of this. see Simon [1981].

Scanned by CamScanner



2.2. PRODUCTION SYSTEMS 43

They have extremely underspecified left sides, so it is hard to use them to guide a
search—too many of them are applicable at once. Many of the rules are really only
useful for looking back and rationalizing a solution after it has been found. In essence
the problem is that Polya’s rules have not been operationalized. ,

}chcrthclcss, Polya was several steps ahead of AI. A comment he made in the
pretace to the first printing (1944) of the book is interesting in this respect:

The following pages are written somewhat concisely, but as simply as pos-
sibie, and are based on a long and serious study of methods of solution, This
sort of study, called heuristic by some writers, is not in fashion nowadays
but has a long past and, perhaps, some future.

"i\ ) » M 3 M - N 1 1
_ There are two major ways in which domain-specific, heuristic knowledge can be
Incorporated into a rule-based search procedure: |

e In the rules themselves. For example; the rules for a chess-playing system might
describe not simply the set of legal moves but rather a set of “sensible” moves, as
determined by the rule writer.

¢ As a heuristic function that cvaluates individual problem states and determines
how desirable' they are.

«fs

“A heuristic function is a function that maps from problem state descriptions to measures
of desirability, usually represented as numbers. Which aspects of the problem state are
considered, how Those aspects are evaluated, and the weights given to individual aspects

e R

are chosen in such a way that the value of the heuristic function at'a"given node in

“fie search process gives as good an estimate as possible of whether that node is on the
desired path to a solution.~~ ' ‘ o
ﬁﬁVWcll-designed heuristic functions can play an important part in efficiently guiding

a search process toward 4 solution. Sometim=s very simple heuristic functions can
provide a fairly good estimate of whether a path is any good or not. In other situations,

“more complex heuristic functions should be employed. Figure 2.8 shows some simple

Theunistic functions for a few preblems. Notice that sometimes a high value of the
heuristic function indicates a r_gl_gi_y_g_l@ggi,position (as shown for chess and tic-tac-
toe). while at other times & ‘lr?)vw value indicates an ad}(?{ltagepus.situation (as shown
for the traveling salesman). it does not matter, in general, Which way the function 1s

stated. The program that uses the values of the function can attempt to minimize it or t¢

rnaximize it as appropriate. o . | .
+f Thepurposeofa heuristic function s to guidethe search process in th.e mos.t proﬁta?!e:-
direction by. suggesting which path to follow first when more thfm one is avmlablg—, '1115
ore accurately the heuristic function estimates the true merits of each noce in the
search tree -(6}; graph), the more direct the solution process. In the extreme, the heuristic
" function would be so good that essentially no search would be required. The system

wotld move directly to a solution. But for many problem§, th¢ cost of cor_n'puting the
value of such a function would outweigh the effort .sa.ved in t?le search process. After
all. it would be possible to compute a perf,ecft_ .heunsuc_ function by doing a complete
’ ion and determining whether it leads to a good solution.

search from the node in questl : r 2 g :
In general, there is a trade-off between the cost of evaluating a heuristic function and
he function provides.

the savings in search time that t

Scanned by CamScanner



Chess the material advantage of our
_side over the opponent

Traveling Salesman the sum of the distances so far
* Tic-Tac-Toe 1 for each row in which we could
i win and in which we already have ,
one piece plus 2 for each such ‘
~ row in which we have two pieces \\//

Figure 2.8: Some Simple Heuristic Functions

In the previous section, the solutions to Al problems were described as centering on
a search process. From the discussion in this section, it should be clear that it can more
precisely ‘be described as a process of heuristic search. Some heun’sticé will be used
to define the control structure that guides the application of rulésn 1 Search process.
Others, as we shall see, will be.encoded-in the rules themselves. In both - iy “they will
represent either general or specific world knowledge that makes the Solution of hard”~
gobler;i"s“fias_i‘ble:<This-leads"t6' anottier way that one could define artificial intelligence:
e study of techniques for solving exponentjall . g o o :
exploiting knowledge about the pfoblig{ié?&i?xd-Pr.pbl\959§&lt&RCllY,Danlal,‘txme7by

Scanned by CamScanner



2.3 Problem'Character-istics'

reuristic search is a very general method applicable to 2 large class of problems. It
encompasses a variety of specific téchniques, each of which is particularly effective
for a‘small class of problems. In order to choose the most appropi'iate method (or
combination of methods) for a particular problem, it is necessary to analyze the problem

along several key dimensions:

«/Is the problem decomposable into a set of (nearly) independent smaller or easier

_subproblems?
¢/ Can solution steps be ignored or at least undone if they prove unwise?

-

</Is the problem’s universe predictable?
-/IS a good solution to the problem obvious without comparison to all other possible

solutions? -

e Is the desired solution a state of the world or a path to a state?

e Isa large amount of knowledge absolutely required to solve the problem, or is
knowledge important only to constrain the search?

e Can a computer that is simply given the problem return the solution, or will the
solution of the problem require interaction between the computer and a person?

Scanned by CamScanner



2.3. PROBLEM CHARACTERISTICS ‘ 45

2 5 2 2 .
J. x +3x+sinx cosx dx

P

J-.rzc'ix ISX dx I sinx cosx dx
3 3 . Brx. B
- 3| x dx (1 -cosx)cosx dx
3 I cos’x dx "'J. cos'x dx

2 I S !

j-lz-(1+cos2.x)dx
-
AN L | | |
| > -1 dx. 7 cos 2x dx
. _1. - _l_ 3 | J
2X = sin 2x \/

Figure 2.9: A Decomposable Problem

In the rest of this section, we examine each of these questions in greater detail.
Notice that some of these questions involve not just the statement of the problem itself
but also characteristics of the solution that is desired and the circumstances under which
the solution must take place. .

2.3.1 Isthe Problem Decomposable‘{/

Suppose we want to solve the problem of computing the expression
/(x2 + 3x + sin®x - cos®x) dx

We can solve this p jblem‘wezgcﬁlg it down into three smaller.problems, each of
which we can then solve - by using a small collection of specific rules. Figure 2.9 shows
the problem tree that willbe generated by the process of problem decomposition as it can’
be exploited by a simple recursive integration program that works-as follows: &each
step, 1t checks to see whether the problem itis working on is immediately solvable. If so,
then.the answer is. returned directly. If the problem is not-easily solvable ,the mtegrato{
checks to see whether it can decompose the problem into smaller problems If it can,
it creates those problems and calls itself recursrvely on them. Using this techmque of
probiem decom; mﬂan,ﬂec“n_oftensolveyerylarge‘problems easrly :

Now considerthe problem illustrated in Fi gure 2.10. This problem is drawn from the

domain often referred to in Al literature as the blocks world. Assume that the following
operators are available:

Scanned by CamScanner



46 CHAPTER 2. PROBLEMY, PROBLEM SPACES, AND SEARCT]

Stant: Goal
A%
A [7]
ON(C, A) ON(B, C) and ON(A, BB)

Figure 2,100 A Stmple Blocks World Problem

ON, O) and ON(A, 13)

/ /-\_

ON(B. O) [ ona 1y

PutBon C

ON(B, Q) CLEAR(A) ON(A, B)
Move A 1o table PutAonB
CLEAR(A) ' ON(A, B) -

Figure 2,112 A Proposed Solution for the Blocks Problem

1. CLEAR(x) [block x has nothing on it] — ON(x, Table) [pick up x and put it on
the table]

2. CLEAR{) and CLEAR() — ON(x, ) [put x on y}

Applying the technique of problem decomposition to this simple blocks world ex-
ample would lead to a solution tree such as that shown in Figure 2.11. In the figure,
goals are underlined. States that have been achieved are not underlined. The idea of this
solution is te reduce the problem of getting B on C and A on B to two separate problems.
The first of these new problems, getting B on C, is simple, given the start state. Simply
put B on C. The second subgoal is not quite so simple. Since the only operators we
have allow us to pick up single blocks at a time, we have to clear off A by removing C
before we can pick up A and put it on B. This can easily be done. However, if we now
try to combine the two subsolutions into one solution, we will fail. Regardless of which
one we do first, we.will not be able to do the second as we had planned, In this problem,
the two subproblems are not independent. They interact and those interactions must be
considered in order to arrive at a solution for the entire problem.

These two examples, svmbolic integration and the blocks world, illustrate the differ-
ence between decomposable and nondecomposable problems. In.Chapter 3, we present
a specific algorithm for problem decomposition, and in Chapter 13, we look at what
happens when decomposition'is impossible.

Scanned by CamScanner



T RRRRRERIE—————— S A

2.3, PROBLEM CHARACTERISTICS 47

Start
21813
11614
7 5

Figure 2.12: An Example of the 8-Puzzle

-

2.3.2  Can Solution Steps Be Ignored or Undone?/. :

Suppose we are trying (o prove a mathematical theorem, We proceed by first proving 2

lemma that we think will be useful, Eventually, we realize that the Jemma is no help 2t
all. Arc we in trouble?

No. Everything we need to know to prove the theorem is still true and in memory,
if it ever was. Any rules that could have been applied at the outs<1 can still be applied.
We can just proceed as we should have in the first place. All we have lost isthe cffort
that was spent exploring the blind alley. )

Now consider a different problem.

The 8-Puzzle:._ The 8-puzzle is a square tray jn which are. laced, gight
square tiles. The remaining ninth square is uncovered.” Each tile has a
‘mumber on It A tilé ihat is adjacent 16 i€ BTGk space can be slid into tha
‘space, A game consists of a_starting position and a specified goal position.
The goal is to transform the starting positioninto the goal position by sliding
the tiles around.

s

..... -

e /

A sample game using the 8-puzzle is shown in Figure 2.12. In attempting to solve the
8-puzzle, we might make a stupid move. For example, in the game shown above, we
might start by sliding tile 5 into the empty space. Having done that, we cannot change
our mind and immediately slide tile 6 into the empty space since the empty space will
essentially have moved. But we can backtrack and undo the first move, sliding tiie 5
back to where it was, Then we can move tile 6. Mistakes can still be recovered from
but not quite as casily as in the thecorem-proving problem.~An additional step must ,
be performed to undo each incorrect step, whereas no action ‘was required to “undo” 2
useless lemma. In addition, the control mechanism for an.8.puzzle solver must keep
track of the order in which operations are performed so that the operations can beundone
one at a time if necessary. The control structure for a theorem provér does not need to
record all that information. \ L -
Now consider again the problem of playing chess. Supposea chess-playing program.
makes a stupid move and realizes it a couple of moves fater. It cannot Simply play as
though it had never made the stupid move. Nor can it simply back up and start the game
over from that point. All it can do is to try to make the best of the current situation and

go on from there.

Scanned by CamScanner



48 -
CHAPTER 2 PROBLEMS, PROBLEM SPACES, AND SEARCH

These three problems—theorem proying, the 8-puzzle, and chess—illustrate the

differ ef‘CJCS‘/ t[)et{\!een three important classes of problems:

norablel(e £ | theOrem proving), in which solution steps can be ignored

\}écc;‘verable (e. g;» 8-puzzle), in which solution steps can be undone

‘e Yean 2\

rreCoverable (¢.g., chess), in which solution steps cannot be undone .

These three definitions make reference to the steps of the solution to a problem and
thus may appear to characterize particular production systems for solving a problem
rather than the problem itself. Perhaps a different formulation of the same problem
would lead to the problem being characterized: differently. Strictly speaking, this is
true. But for a great many problems, there is only one (or a small number of essentially
.equivalent) formulations that naturally describe the problem. This was true for each of
the problems used as examples above. When this is the case, it makes sense to view the
recoverability of a problem as equivalent to the recoverabrlrty of a natural formulatlon
of it.

ZThe recoverability of a problem plays an important role in’deter@ining the complex-
1ty of the control structure necessary for the problem’s solution.” Ignorable problems
cwusmg a_simple cpntrol structure that never bacKtracks. Such a control

_structure is easy to implementT R Recoverable problems can be solved ,,1 a‘sl_@my—rﬁ&'é‘
complicated control strategy}hat does someumes make mistakes.J/Backtracking will be

s e o s i

necessary to recover from such_mlstakes, so the control structare must t be im plemented

ris_r_rlg_zlp_ush-dgym stack, in which decrsrons are recorded incase they need to be undone
[ater. Irrecoverable -problems, on “the other hand, will need to be. solved by a system

that expends a great -deal .of effort making each decision since the decision must be
ﬁnal"/SomeJrr;ecowable problems can be solved by recoverabLe style methods used
in a &arznzng process;-in whrch an entire sequence of steps is analyzed 1n advance to

discover Where it will_ Tead "before the first step is actually taken We discuss next the

kinds of problems in which this is possrble

233 Isthe Umverse Predlctable"\/

Again suppose that'we are playmng with the 8- puzzle Every time we make a move, we
knowMyMamdLmM This means that it is possible to plan an entire sequence

of moves ‘and_be_confident:that we know. what the resulting state will be. We can use
plarining to avoid haVlfL&.!Q&D.‘!FL?QEQLm“Q\LQ&» although it wxll sull be necessary o
’_backtrgck past those moves one at a time during the planmng process Thus a control

structurd that allows backtracking will beinecessary.
However in games-other than the 8-puzzle, this planning process may not be possr-
ble. Suppose we wanttoplay brldge One of the decisions we will have to make is which
card to play on the first trick. What we would like to do\ls to plan the entire hand before
mak-ing,that first play. But now it is not possible to.do such planning with certainty
since we cannot know exactly where all the cards are or what the other players will do
on their turns. The best we can. do is to, investigate several plans and use probabilities
of the various outcomes to choose a pian.that has the highest estimated probability of

Jeading to a good score on the hand.
Scanned by CamScanner




- = Voo A ty -, )

\j—\(‘ \,r‘ VNV -t

3 Q“

b Aty
2.3. PROBLEM CHARAC TL:RI.SH%.};&\ 3,\9% 3& w
53 3%

These two games illustrate the difference between ce certain-outcome (e.g. 8 -puzzle)
and uncertain-outcome (¢.g., bridge) problems:*One way ofdc,scnbmg:, plannmg is that jt
is problem solving without feedback from the environment. ;For solvnrhg certain-outcome
prob]cms this_open-loop .approach will work fine since the, result.of an. acnqn can be
predicted perfectly. Thus, planning can be used to generatgia sequence of operators that
is guaranteed to lead to a solution” For uncertain-outcome/fsroblems, however, planning

can at best generate a sequence of operators that has a gobd probabllnlof leddmg toa’
»_splguon ng)l\g_slch_p_mblgms_ we need to allow for a process of plan revision to take
place as the plan is carried out and the necessary feedbatk 'is provided. | In addition to
providing no guarantee of an actual solution, planning fqﬂ' uncertain-outcome problems
has the drawback that it is often very expensive since th¢ number of solution paths that
need to be explored increases exponentially with thej ﬁumber of points at which the
outcome cannot be predicted. .

The last two problem characteristics we have discussed, i ignorable versus recoverable
/\/ereus irrecovegable and certain-outcome vérsus uncertain-outcome; interact in an in-
“teresting way. As has already been mentioned, one way tosolve irrecoverable problems

is to plan an entire solution before - embarking on an,lmplementatlon of the _plan. But
this planning process can only be done effectively fof certain- outcome problems Thus
one of the hardest types of problems to solve is the/ irrecoverable, uncertain-outcome.

A few examples of such problems are: C/{‘,\Y‘e_q_o e YO (3 ?‘Q‘O‘o e/

R Al X NN R AL Al g

/'
e Playing bridge. - But we can (EB fairly well since we have available accurate
estimates of the probabilities of each of the/possible outcomes.

e Controlling a robot arm. The outcome/ls uncertain for a variety. of reasons.
Someone might move something into thé/ path of the arm. The gears of the arm
might stick.: A slight ¢rror could cause fhc arm to knock over a whole stack- of

things.

e Helping a lawyer decide how to defegfd his client against a murder charge. Here,
we probably cannot even list all th¢ powble outcomes much less assess thexr'

probabilities..

2.3.4 Is a Good Solution Absplute or Relativef,’/ -

Consider the problem of answering questions based on a databdse of simple facts, such
as the following:

. Marcus was a man.

. Marcus was a Pompeian.

. Marcus was born in40 A.D.

Ail men are mortal.

All Pompeians died when the volcano eruptcd in 79 A. D
No mortal lives longer than }50 years.

[t is now 1991 A.D. J

Suppose we ask the question “Is Marcus alive?” By representing each of these facts
n a formal language, such as predicate logic, and then using formal inference methods,

N AL~

Scanned by CamScanner



¢ ' )
o A Db s By Justification
AN /:& :
o\ 1. . m& was a man, axiom 1|
O e zx‘;d k‘ll 1en are mortal. axiom 4
‘J*M'A\’Vi%,yﬁnrcus is mortal. 1,4
=3 ' Marcus was born in 40 A.D. axiom 3
7. Itisnow 1991 A.D. axiom 7
9. Marcus' age is 1951 years. 3,7
6. No mortal lives longer than 150 years. | axiom 6
10. Marcus is dead. 8,6,9
OR
7. Itisnow 1991 A.D. axiom7
5. All Pompeians died in 79 A.D. axipm 5
11. Al Pompeians are dead now. 7.5
2. Marcus was a Pompeian. axiom 2
12. Marcus is dead. 11,2

-
N

Figure 2.13: Two Ways of Deciding That Marcus Is Dead

Boston | New York | Miami | Dallas | S.F.

Boston ' 250 1450 1700 | 3000

‘New York 250 1200 1500 | 2900

Miami 1450 1200 1600 | 3300

Dallas 1700 1500 1600 1700
S.F. 3000 2900 3300 1700

Figure,?.14: An Instance of the Traveling Salesman Problem

we can fairly easily derive an answer to the question.” In fact, either of two reasoning
paths will lead to the answer, as shown in Figure 2.13. Since all we are interested in is
the answer to the question, it does not matter which path we foliow. If we do follow one
path successfully tothe answer, there is no reason to go-back and sce if some other path
might also lead to a solution.

But now consider again the traveling salesman problem. Qur goal is to find the
shortest route that visits each city exactly once. Suppose the cities to be visited and the
distances between them are as shown'in Figure 2.14. . _
~. One place the salesman could start is Boston. [n that case, one path that might be
followed is the cne shown in Figure 2.15~which is 8850 miles long. But is this the
solution to the problem? The answer is that we cannot be sure unless we also try all

-"’_’er course. representing these statements so that a mcchanical procedure could exploit them to answer
.the question also requires the-cxplj;:it mention of other facts. such as “‘dead implies not alive.” We do this in

£ chupler 3.
Scanned by CamScanner



51
2.3. PROBLEM CHARACTERISTICS

‘| Boston o

(3000)/

San Francisco

(1700) /

Dallas

as00) /

New York

Boston

‘Togal: (8850) -
Figure 2.15: One Path among the Cities

other paths to make sure that none of them is shorter. In this case, as can be seen from
Figure 2.16, the first path is definitely not the solution to the salesman’s problem.

These two examples illustrate the difference between any- -path problems and best-
‘path problems. ‘Best-path problems are, in general, computationally harder than any-path
problems. Any- path problems can often be solved in a reasonable amount of time by
using heuristics that suggest good paths to explore. (See the discussion of best-first
search in Chapter 3 for one way of doing this.) If the heuristics are not perfect, the
search for a solution may not be as direct as possible, but that does not matter. For true
best-path problems, however, no heuristic that could possibly miss the best solution.can
be used. So a much more exhaustive search will be performed.

2.3.5 Is the Solution a State or a Path?/

Consider the probiem of finding a consistent interpretation for the sentence
The barik president ate a dish of pasta salad with the fOrk;'

There are several components of this sentence, each of which, in isolation ,may have
more than one mterpretatxon But the components. must form a coherent whole, and so
they constrain each other’s interpretations. Some of the sources of ambiguity in this
sentence are the followmg

‘The word “bank’ may refer exther to-a ﬁnanc1al mstxtutlorTor 1o a side of
But only one of:theése may have a president. - ek

-

Scanned by CamScanner



CHAPTER 2 PRONLIMS, PROILIM SEACEY, MU SEARCTT

| Ihmhm'
(J000) f""" L (250)

p l

[ A e
| B I'nnu-lmwl | New York l

any o \ (1200

l')nllu::l IM”'”” I

(1500) / \ (1600)

New York ll_)-.-llJIZl
(1200) / -\(17(;())
Miami San Francisco
(1450) / \ (3000)
Boston | Boston
Total: (8850) Total: (7750)

| Figure 2. 16 Two Péihs Among the Cities

e The word “dish” is the objéct of the verb “eat.” It is possible thata dish was eaten.
‘But it is more likely that the pasta salad in the dish was eaten.’

e Pasta salad is a salad _confaini'ng pasta. But there are other ways meanings can be
formed from pairs of nouns. For example, dog food does not normally contain

dogs.

The phrase “with the fork” could modify several parts of the sentence. In this
" case. it modifies the verb “eat.” But, if the phrase had been “with vegetables,”

then the modification structure would be different. And if the phrase had been
- «with her friends,” the structure would be different still. g

Because of the interaction among the interpretations-of the constituents of this sentence,,
‘some search may be required to ﬁnd.a complete interpretation for the sentence. But. 1
solve the problem of finding the interpretation we need to produce only the interpretation
itself. No record of the processing by which the interpretation was found is necessary.
Contrast this with the water jug problem. Here it is not sufficient to report that we
ed the problem azid that the final state is (2, 0). For this kind of problem, what
we really must repqh js fiot the final state but the path that we found to that state. Thus
a statement of a solutign to this problem must be a sequence of operations (sometimes
called a plan) that prod’ucés the final state. ‘
'These two exampl/és, natural language understanding and the water jug problem,
illustrate the difference between problems whose solution is a state of the world ;md
pfoblcfns whose solution is a path to a state. Atone level, this difference can be ignored

and all problems /éan be formulated as ones in which only a state is required to be

have solv

' 4

Scanned by CamScanner



2.3, PROBLIM CHARACTERISTICS 53

reported. If we do this for problems such as the water jug, then we must redescribe our -
states so that each state represents a partial path to a solution rather than_jyst a single
state of the world. So this question is not a formally significant one. But, just as for the
question of ignorability versus recoverability, there is often a natural (and economical)
formulation of a4 problem in which problem states correspond to situations in the world,
not sequences of operations. In this casc, the answer to this question tells us whether it
is necessary to record the path of the problem-solving progcess as it proceeds.

7”23.6 WhatIs the Role of Knowledge? -

Consider again the problem of playing chess. Suppose you had unlimited computing
power available. How much knowledge would be required by a perfect program?
The answer to this question is very little—just the rules for determining legal moves
and some simple control mechanism that implements an appropriate search procedure.
Additional knowledge about such things as good strategy and tactics could of course
help considerably to constrain the search and speed up the execution of the program.

But now consider the problem of scanning daily newspapers to decide which are
supporting the Democrats and which are supporting the Republicans in some upcoming
election. Again assuming unlimited computing power, how much knowledge would be
required by a computer trying to solve this problem? This time the answer is a great
deal. It would have to know such things as:

e The names of the candidates in each party.

o The fact that if the major thing you want to see done is have taxes lowered, you
are probably supporting the Republicans. '

e The fact that if the major thing you want to see done is improved education for
minority students, you are probably supporting the Democrats.

e The fact that if you are opposed to big government, you are probably supporting
the Republicans. o

e Andsoon...

These two problems, chess and newspaper story understanding, illustrate the differ-
ence between problems for which a lot of knowledge is important only to constrain the
search for a solution and those for which a lot of knowledge is required even to be able
to recognize a solution.

2.3.7 Does the Task Require Interaction with a Person?

Sometimes it is useful to program computers to solve problems in ways that the majority.
of people would not be able to understand. This is fine if the level of the interaction
between the computer and its human users is problem-in solution-out. But increasingly
we are building programs that require intermediate interaction with people, both to
provide additional input to the program and to provide additional reassurance to the
user.

Consider, for example, the problem of proving mathematical theorems. If

Scanned by CamScanner



1. All we want is to know that there 1S 2 proof
2. The program is capable of finding a proof by itself

then it does-nct matter what s;rategy the program takes to find the proof. It can use, for
example, the resoiution procedure (see Chapter 5), which can be very efficient but w;nch
does not appearnatural to- people. But if either of those conditions is violated, it may
~ matter very much how 2-proof'is found. Suppose that we are trying to prove some new,
- . very difficult theorem. We might demand a proof that follows traditicnal patterns so that
a mathematxcmn can read the proof and check to make sure itis correct. Alternatively,
finding a proof of the theorem might be sufficiently difficult that the program does not-
xnow where to-start. - At the moment, peonle are still better at doing the high-level
strategy required for a proof. So the computer might like to be able to ask for advice.
For example, it is often much easier.to do a proof in geometry if someone suggests the
right line to draw intc the figure. To exploit such advice, the computer’s reasoning must
be analogous to that of its human advisor, at least on a few levels. As computers move -
into areas of great si gmﬁcance to human lives, such as medical diagnosis, people will be-
very unwilling to accept the verdict of a program whose reasoning they-cannot follow.

Thus we must distinguish between two types of problems

® Sohtary, in which the computer is given a probiem dcscnptxon and produces an an-
swer withno intermediate communication and with nodemand for an explanatlon

of the reasoning process

e Conversational, in which there is intermediate commumcanon between a person
and the computer, either to provide additional assistance to the computer or to

provide additionai 1nformatlon to the user, or both

Of course, this distinction is not a strict one describing particular problem domains.

As we just showed; mathematical theorem proving could be regarded as ¢ither. But fora
other of these types of systems will usually be desired

particular application,’one or the
tin the choice of a problem- solvmc method

and that decision will be importan

Scanned by CamScanner



1. All we want is to know that there is a2 proof
2. The program is capable of finding a proof by itself

then it does nct matter what strategy the program takes to find the proof. It can use, for
example, the resolution procedure (see Chapter 5), which can be very efficient but which
does not appear natural to people. But if either of those conditions is violated, it may
matter very much how aproofis found. Suppose that we are trying to prove some new,
- very difficult theorem. We mightdemand a proof that follows traditional patterns so that
a mathematician can read the proof and check to make sure it is correct. Alternatively,
finding a proof of the theorem might be sufficiently difficult that the program does not
xnow where to start. At the moment, people are still better at doing the high-level
strategy required for a proof. So the computer might like to be able to ask for advice.
For exampile, it is often much easier to do a proof in geometry if someone suggests the
right line to draw intc the figure. To exploit such advice, the computer’s reasoning must
be analogous to that of its human advisor, at least on a few levels. As computers move
into arzas of great significance to human lives, such as medical diagnosis, people will be
very unwilling to accept the verdict of a program whose reasoning they cannot follow.

Thus we must distinguish between two types of problems:

e Solitary, in which the computer is given 2 probiem deseription and produces an an-
swer with no intermediate commurication and with no demand for an explanation

of the reasoning process

o Conversational, in which there is intermediate communication between a 'pegson
and the computer, either to provide additional assistance to the computer or to

provide additional information to the user, or both

Of course, this distinction is not a strict one describing particular problem domains.
As we just showed, mathematical theorem proving could be regarded as either. But fora
particular application,one or the other of these types of systems will usually be desired
and that decision will be important in the choice of a problem-solving method. '

2.3.8 Problem Classification v/

When actual problems are examined from the point of view of all of these questions,
. it becomes apparent that there are severa! broad classes into-which the problems fali.
. These.classes can each beassociated with a generic control strategy that is appropnate
for solving the problem. For example, consider the generic problern of classificarion.
The task here is to examine an input and then decide which of aset of known classes
the input is an instance of. Most diagnostic tasks, including medical diagnosis as well
as diagnosis of faults in mechanical devices, are examples of classification. Another
example of a generic strategy is propcse and refine. Many design and planning problems
can be attacked with this strategy. :
Depending on the granularity at which we attempt o classify problems and control
strategies, we may come up with different lists of generic tasks and procedures. See
Chandrasekaran [1986] and McDermott [1588] for two approaches to constructing such
lists. The important thing to remember here, though, sinice we are about to embark on a
discussion of a variety of p_r'ob}em-solving methods, is that there is no one single way of

Scanned by CamScanner



solvingall problems. But nelther must each new problem be considered totally.ab initio.
Instead, if we analyze our problems carefully and sort our problem-solving methods by
the kinds of problems for which they are suitable, wé will be able to bring to each new
problem much of what we have learned from solvmg other, similar problems.

Scanned by CamScanner



2.4 Production System Characteristics

We have just examined a set of characteristics that distinguish various classes of prob-
lems.  We have also 2 argued that production §y§Enis areé a pood Wiy (6 describe the
opcratlons that can be performed in a search for a solution to a problem. Two questions

we n}vlght reasonably ask at this point are:

1. Can production systems, like problems, be described by a sct of characteristics
that shed some light on how they can casily be implemented?

2. If so, what relationships are there between problem types and the types of pro-
duction systems best suited to solving the problems?

The answer to the ﬁrst question is yes. Consider the following definitions of classes
of production systemsfAymonotonic: production system is a pmduclmn system in which

e

the apphcatmn of.aru E’"ycr,,pmgntq e later application of anpother. rule that, could
also have been apphed at the time the firs rulc was selécted. A nonmonotonie: pmrlm tion

system is one in which this is not true, A partially commutanvc' pmduc fion-system is a
production system with the property thal ifthe application of a part:cular scqucnc(, of

e A

Ttules transforms state x into state Y, then any pcrmulauon of those ru ¢y thatis 'Q]owthc

(i.€., eachrule’s precondmons are satisfied when it is Capplicd) : also transforms state x into

state A commumum.pmducrmn,syﬂem is a production system that is both monotonic
and ;-iartlally commutative.? '
-~The’ SIgnTﬁ'c%—ﬁEe of these catcgoncs of productlon systems lies in the relationship
between the categories and appropriate implementation strategies. But before discussing
that relationship, it may be helpful to make the mcamngq of the definitions clearer by
showing how they relate to spec1ﬁc problems.
Thus we arrive at the second question above, which asked whcthcr there is an

"'-—-‘-u‘-: e e L N

mterestmg relatxons]_x_:p«pft_y\_/ggp. ‘Elﬂﬁ?_‘:.s,,_f?f B”r’(’)glﬁgcllon .systems and classes of  problems:
For any solvable problem, there exist an infinite number of proqa"l'rgt-l'o‘n systems that
describec ways to find solut:ons Some will be . more-naturalor.efficient.than,others. Any
problem that can be solved by unx_pmﬁiucwm system can be solved by a commultative

one (our most T'Cth'IC[Cd class_) but the commutative one may be so unwieldy as to

PT—— At —

g L snal

be’ pracncallv useless, It may use individual states to represent entire sequences of
applicaiions. of rules of a simpler, noncommutative system. Soina formal sense, there,
1S 1o rclatxonshlp between kmds of_problt,m_,s and Kinds ofproductlon Systcms since all
problemscanbé do1ved by all kmd9 of : systems. But in a practical sense, there dé‘ﬁ’n?{éfy
is such 2 reqanor'Sh.‘,EmbeWﬁ?.” kinds of pioblems and Ahe kinds.of systems that Jend
themsalves” naturally to des crlbmg thosp problems. To see this, ‘let s look’ =X
examples. Figure 2.17 shows the four categories of production systems produced by

the two dichotomies, monotomc versus nonmonotonic and partially commutative versus

8This corresponds to the definition of a commutative production system given in Nilsson [1980).

e M e gy S, P S— e ——— e

“Scanned by CamScanner



56 CHAPTER 2. PROBLEMS, PROBLEM SPACES, AND SEARCH

Monotonic Nonmonotonic __ |
Partially | Theorem proving | Robot navigation
| commutative | Gk <l |¢ (1o Sl
» Not partially | Chemical synthgsis | Bridge /
commutative | .y '..)‘»r.‘—@;&,'. RV RS L -

g,

! . B
Figure 2.17: The Four Categories of Production Systems ,

i
\

' 2
nonpartially commutative, along :i/'ith: some problems that
each type of system. The upper left corner represents commutative systems.

‘llag,_i_ally commutative, monotonic production §ystems are usgfuulﬂ‘fp“rmg,_g}y_\k{.iﬂgg.,ignor—
able problems. This is not surprising since the definitions of the two are essentially the
same. But recall that ignorable problems are those for which.a natural formulation leads
to solution 'that can be ignored. Such a natural formulation will then be a partially

“commutative, monolonic system. Problems that involye creating new things rather than
ét_langi_ng old ones are gencrally“mgg Theoien proving, as we have described it,
Xa ative proé'ess." Making deductions from some known facts

s one example of such a creali
is a similar creative process. Both of those processes can easily be implemented- with a

partially commutative, monotonic system. ‘
Partially commutative, monotonic production systems are important from an imple-

mentation standpoint because they can be implemented withoutthe ability tobacktrack to
revious states when itis discovered that an incorrect path has been followed. Although
it is often useful to implement such systems with backtracking in order to guarantee a
h, the actual database representing, the problem state need not be re- -
stored. This often results in a considerable increase in efficiency, particularly because,
since the database will never have to be restored, it is not necessary to keep track of
where-in the search process every change was made. ~
We have now discussed partially commutative production systems that are also
monotonic. They are good for problems where things do not change; new things get
created. Nonmonotonic, partially commutative systems, on the other hand, are useful-for
problems,in which changes occur but can be reversed and in which order of operations.
is not critical. _'Th.is is usually the case in physical manipulation problems, such as ' -
robot navigation on a flat plane. Suppose that a robot has the following operators: go
north-(N), go east (E), go south (S), and go west (W). To reach its goa'l,,' it does not
matter whether the robot executes N-N-E or N-E-N. Depending on how the operators
are chosen, the 8-Puzzle and the blocks world problem can also be considered partially

can naturally be solved by

systematic searc

commutative. : :
Both types of partially commutative production systems are significant from an im-

pleméntation point of view because they tend to lead to many duplications of individual
states during the search process. This is discussed further in Section 2.5. :

Production systems that are not partially commutative are useful for.many problems
in which irreversible changes occur. For example, consider the problem of ci'c'é'téi:nn'nin(y
a process to poduce a desired chemical compound. The ope}ators”avabi‘lz;blé includz
such things as “Add chemical x to the pot” or “Changé the temperature to ¢ degrces.”
These operators may-cause irpeversiblechanges to the potion being brewed. The order

Scanned by CamScanner



