
Node.js

•Getting Started with Node.js:
➢Understanding Node.js

➢Installing Node.js

➢Working with Node Packages

➢Creating a Node.js Application

➢Writing Data to the Console

About Node.Js

• Node.js is an open-source and cross-platform JavaScript runtime environment, that runs the

V8 JavaScript engine, the core of Google Chrome, outside of the browser.

• A Node.js app runs in a single process, without creating a new thread for every request.

Node.js provides a set of asynchronous I/O primitives in its standard library that prevent

JavaScript code from blocking(i.e., Non-blocking)

• When Node.js performs an I/O operation, like reading from the network, accessing a database

or the filesystem, instead of blocking the thread and wasting CPU cycles waiting, Node.js will

resume the operations when the response comes back.

• This allows Node.js to handle thousands of concurrent connections with a single server

without introducing the burden of managing thread concurrency, which could be a significant

source of bugs.

• For CPU intensive requests ,it is not as good as I/O intensive requests.

Differences Browser vs. node.js(V8 engine)
• In the browser, most of the time is interacting with the DOM, or other Web Platform APIs like

Cookies.

• From the perspective of a frontend developer who extensively uses JavaScript, Node.js apps
bring with them a huge advantage: the comfort of programming everything - the frontend and
the backend - in a single language.

In browser In node.js

Interact with DOM and APIs like Cookies No need to modify DOM, and no window and
document objects.

Rich set of APIs are not provided. Provided APIs as modules.

Java script version Compatibility No transformation . Supports from ES2015+
onwards.
Uses babel to transform the code compatible
with ES5-compatible

Supports CommonJS and ES modules
standard being implemented.

Supports both CommonJS and ES(ECMAScript)
modules

V8 Engine

• V8 is the name of the JavaScript engine that powers Google Chrome, which parses and
executes javascript code in chrome browser.

• It is independent of the browser in which it is hosted, which becomes the part of node.js
in 2009 and its evolution.

• JavaScript is internally compiled by V8 with just-in-time (JIT) compilation to speed
up the execution.

• V8 is both compiler and interpreter ,it uses TurboFan compiler to translate bytecode to
machine code and ignition(interpreter) to generate bytecode from Abstract Syntax tree.

• Other browsers has the similar javascript engines

• Firefox has SpiderMonkey

• Safari has JavaScriptCore(known as nitro)

• Edge was originally based on Chakra but has more recently been rebuilt using
Chromium and the V8 engine.

Step 1: download latest version of nodejs from
nodejs.org and install in your computer

Installation of Nodejs

After successful installation, nodejs folder is created in the directory C:\Program Files\nodejs (in my system,
it may be differ in your system depends on the drive you selected at the time of installation)

Check, the version of nodejs from command promptc

Check the version of nodejs and
npm(node package manager)

Note: include the path in edit
environment variable, if command is
not working

• npm is the standard javascript package manager for node.js.

• It allows you to find, install, remove, publish, and do everything else related

to Node Package Modules. The npm provides the link between the Node

Package Registry and your development environment.

Option Description Example

search Finds Module packages in the repository npm search express

install Installs a package either using a

package.json file, from the repository,

or a local location

npm install

(or)

npm install express

pack Packages the module defined by the

package.json file into a .tgz file

npm pack

publish publishes the module defined by a

package.json file to the registry

npm publish

unpublish Unpublishes a module you have published npm unpublish

update Updates the specified package name npm update or

npm update <package-name>

npm(node package manager)

assert Provides a set of assertion tests

buffer To handle binary data

child_process To run a child process

cluster To split a single Node process into multiple processes

crypto To handle OpenSSL cryptographic functions

dgram Provides implementation of UDP datagram sockets

dns To do DNS lookups and name resolution functions

domain Deprecated. To handle unhandled errors

events To handle events

fs To handle the file system

http To make Node.js act as an HTTP server

https To make Node.js act as an HTTPS server.

Built-in modules
in Node.js

What is Module?
• A module is any file or directory in the node_modules directory that can be loaded by the

Node.js require() function.

• To be loaded by the Node.js require() function, a module must be one of the following:

• A folder with a package.json file containing a "main" field.

• A JavaScript file.

tls To implement TLS and SSL protocols

tty Provides classes used by a text terminal

url To parse URL strings

util To access utility functions

v8 To access information about V8 (the JavaScript engine)

vm To compile JavaScript code in a virtual machine

Zlib To compress or decompress files

string_decoder To decode buffer objects into strings

timers To execute a function after a given number of milliseconds

Built-in modules

path To handle file paths

punycode Deprecated. A character encoding scheme

querystring To handle URL query strings

readline To handle readable streams one line at the time

stream To handle streaming data

net To create servers and clients

os Provides information about the operation system

Importing modules using require()

• Local modules - with in the same package require(‘module_name’)

• Non-local modules

• core module - comes with along nodejs installation (example:

 (example : os, fs, path, http, url, etc..)

• non-core module - install explicitly using npm and import using require

 (example: express, nodemon, react, MongoDB etc.,

// importing a module from local file system

const myLocalModule = require('./path/myLocalModule');

// Importing a module from node_modules or Node.js built-in module:

const crypto = require('node:os’);

// Importing a JSON file:

const jsonData = require('./path/filename.json');

Modules can be of CJS(commons) or ESM(ECMAScript Module). By default,Node.js treats all modules as
CJS

let a=[10,20];

let b="hello world";

let c={id:101,name:"xyz"};

let greeting=function(name){

 return `have a good day ${name}`;

}

module.exports={a,b,c,greeting};

const test=require('./file1');

console.log(test.a);

console.log(test.b);

console.log(test.c);

console.log(test.greeting("krishna"));

file1.js

file2.js

Exports make the data
objects or functions
accessible outside the
file, in which it is
imported.

require function is used to import
the module

test is the object created in
file2 for all the exports in
file1 and can be accessed
using .(dot).

Build and Import local modules

let a=[10,20];

let b="hello world";

let c={id:101,name:"xyz"};

let greeting=function(name){

 return `have a good day ${name}`;

}

module.exports={a,b,c,greeting};

 (or)

module.exports.a=a;

module.exports.b=b;

module.exports.c=c;

module.exports.greeting=greeting;

exports.greeting=function(name){
 return `have a good day ${name}`;
}

(or)

Functions can be exported at time of definition

exporting in a single group

exporting individually by giving a
name to each object exported.

Build and Import built-in modules

const path = require('path');

const filePath="C:\\temp\\myfile.html";

console.log(path.dirname(filePath));

console.log(path.basename(filePath));

console.log(path.extname(filePath));

Creating a package.json file

To create a default package.json, go to directory
$ npm init --yes

PS E:\2024-25\Mern\nodejs1> npm init -y
Wrote to E:\2024-25\Mern\nodejs1\package.json:

{
 "name": "nodejs1",
 "version": "1.0.0",
 "description": "",
 "main": "sample.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC"
}

•name: the current directory name
•version: always 1.0.0
•description: info about the package, or an empty string "“
•main: name of .js file
•scripts: by default creates an empty test script
•keywords: empty
•author: empty
•license: ISC

https://opensource.org/licenses/ISC

1. Create a project folder named .../Numbers. This is the root of the package.

Creating NodeJs Application

Step 2: Create the file that will be loaded when your module is required by another application

function isEven(n){
 return n%2===0;
}
function isOdd(n){
 return n%2===1;
}
function isPrime(n){
 for(var i=2;i<parseInt(Math.sqrt(n));i++)
 {
 if(n%i===0)
 return false;
 }
 return true;
}
exports.isEven=isEven;
exports.isOdd=isOdd;
exports.isPrime=isPrime;

Step 3: create package.json in the root folder

E:\2024-25\Mern\Numbers> npm init

Enter the details as prompting

{
 "name": "numbers",
 "version": "1.0.0",
 "description": "identifying prime,even,odd, etc...",
 "main": "numbercategory.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [
 "prime",
 "even",
 "odd"
],
 "author": "krishnalikki",
 "license": "ISC"
}

Step 4: Create a file named README.md in the .../censorify folder. You can put whatever read me

instructions you want in this file.

Step 5: Create an account in npm registry at https://npmjs.org/signup.

 Use the npm adduser command from a console prompt to add the user you created to the environment.

 Type in the username, password, and email that you used to create the account.

Step 6: Publish the module using the following command from the folder in the console:

 npm publish

publish it in npm registry

It can be done in 2 ways

1. Using git (by adding repositories attribute in package.json file

2. Without using git.

Without using git

https://npmjs.org/signup

{
 "name": "numbers",
 "version": "1.0.0",
 "description": "identifying prime,even,odd, etc...",
 "main": "numbercategory.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "repository": {
 "type": "git",
 "url": "git+https://github.com/krishnalikki/folder1.git"
 },

 "keywords": [
 "prime",
 "even",
 "odd"
],
 "author": "krishnalikki",
 "license": "ISC"
}

Add repository
attribute to
package.json file.

1. Using git (by adding repositories attribute in package.json file

Errors

Resolution:
name in the package.json is not unique. So, give a unique name by prefixing username to the name of the package

E:\2024-25\Mern\Numbers> npm publish --access=public

Change the access to public, because by default it is a private package

Writing data to console
console is the default module , no need to import using require ()

x=10;

console.log(“the value of x is” , x);

the value of x is 10

console.table([{ a: 1, b: 'Y' }, { a: 'Z', b: 2 }]);

A URL string is a structured string containing multiple meaningful components. When parsed, a URL
object is returned containing properties for each of these components.

https: // user : pass @ sub.example.com : 8080 /p/a/t/h ? query=string #hash

protocol auth hostname

host

port pathname

path

search Hash

URL(Uniform Resource Locator) module

const url = require(‘url’);

var adrr = ‘http://localhost:8080/default.htm?year=2024&month=february’;

url {

 protocol: 'http:',

 slashes: true,

 auth: null,

 host: 'localhost:8080',

 port: '8080',

 hostname: 'localhost',

 hash: null,

 search: '?year=2024&month=february',

 query: [Object: null prototype] { year: '2024', month: 'february' },

 pathname: '/default.htm',

 path: '/default.htm?year=2024&month=february',

 href: 'http://localhost:8080/default.htm?year=2024&month=february'

}

//Parse the address:
var q = url.parse(adr,true);

The parse method returns an object containing url properties

Import an url module

address

Parsing the address

Properties of url

const { createServer } = require('node:http');

const hostname = '127.0.0.1';

const port = 3000;

const server = createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

console.log(`Server running at http://${hostname}:${port}/`);

});

The createServer() method of http creates a

new HTTP server and returns it.

The server is set to listen on the specified port

and host name. When the server is ready, the

callback function is called, in this case

informing us that the server is running.

Whenever a new request is received, the request event is called, providing two objects:

• request (an http.IncomingMessage object) and

• response (an http.ServerResponse object).

Creating a sample http server

https://nodejs.org/api/http.html#http_event_request
https://nodejs.org/api/http.html#http_class_http_incomingmessage
https://nodejs.org/api/http.html#http_class_http_serverresponse

npm
• npm is the standard javascript package manager for node.js.

• It installs, updates and manages downloads of dependencies of your project.

Dependencies are pre-built pieces of code, such as libraries and packages, that your

Node.js application needs to work.

If the project has package.json file ,

will install everything the project needs, in the node_modules folder, creating it if it's not

existing already.

npm install

Installing a single package

You can also install a specific package by running

npm install <package-name>

adds <package-name> to the package.json file.

• It allows you to find, install, remove, publish, and do everything else related to Node Package Modules.

The Node Package Manager provides the link between the Node Package Registry and your

development environment.

Option Description Example

search Finds Module packages in the repository npm search express

install Installs a package either using a

package.json file, from the repository,

or a local location

npm install

(or)

npm install express

pack Packages the module defined by the

package.json file into a .tgz file

npm pack

publish publishes the module defined by a

package.json file to the registry

npm publish

unpublish Unpublishes a module you have published npm unpublish

update Updates the specified package name npm update

	Slide 1: Node.js
	Slide 2
	Slide 3: About Node.Js
	Slide 4: Differences Browser vs. node.js(V8 engine)
	Slide 5: V8 Engine
	Slide 6
	Slide 7
	Slide 8: npm(node package manager)
	Slide 9: What is Module?
	Slide 10
	Slide 11: Importing modules using require()
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Creating NodeJs Application
	Slide 17
	Slide 18
	Slide 19: publish it in npm registry
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Writing data to console
	Slide 24
	Slide 25
	Slide 26
	Slide 27: npm
	Slide 28

