
Unit-5
Utility classes and Regular expressions

Unit-5 content

• Utility Classes: Date, Calendar, Gregorian Calendar, TimeZone, SimpleTimeZone, Locale,
Random.

• Regular Expressions: Regular Expression Processing: Pattern, Matcher, Regular Expression
Syntax, Demonstrating Pattern Matching, Two Pattern - Matching Options, Exploring Regular
Expressions, Reflection.

Regular Expression
• Regular expressions are a great tool to process strings .Using them, you can set a pattern that a

string or substring should correspond to.

• A regular expression is written using alphabetic and numeric characters, also metacharacters are
used that are characters that have a special meaning (are only used in the syntax of regular
expressions).

Searching for Information

The following options to search for information exist:

• Searching for a word

• Searching for words that start with certain characters

• Searching for words that end with certain characters

Checking for Match : Checking for a match to a certain pattern. For example, validating a phone number, email

address, password, etc.

Metacharacters to search for a match of the strings or text boundaries

• ^ — string beginning.

• $ — string end.

• \b — word boundary.

• \B — not a word boundary.

• \A — input start.

• \G — end of the previous match.

• \Z — input end, except for the end terminator, if applicable.

• \z — input end.

Metacharacters to search for character classes

• \d — numeric character.

• \D — non-numeric character.

• \s — whitespace character.

• \S — non-whitespace character.

• \w — alphanumeric character or an underscore.

• \W — any character, except for an alphabetic, numeric character or the underscore character.

• . — (full stop) any character, except for the new string character.

Metacharacters to search for text delimiter characters

• \t — tabulation character.

• \n — new line character.

• \r — carriage return character.

• \f — switching to a new page.

• \u0085 — next line unicode character.

• \u2028 — line separator unicode character.

• \u2029 — paragraph separator unicode character.

Metacharacters to group characters

• [abc] — any of the listed (a,b, or c).

• [^abc] — any, except for the listed (neither a, nor b, nor c).

• [a-zA-Z] — merging ranges (Roman characters from a to z without considering case).

• [a-d[m-p]] — combining characters (from a to d and from m to p).

• [a-z&&[def]] — overlapping characters (characters d,e,f).

• [a-z&&[^bc]] — subtracting characters (characters a, d-z).

Quantifiers

These are metacharacters that are used to indicate the number of characters. They always come after a
character or a group of characters.

• ? — one or absent.

• * — zero or more times.

• + — one or more times.

• {n} — n times.

• {n,} — n times and more.

• {n,m} — at least n times but no more than m times.

Escaping

If you need to use the designation of a metacharacter or quantifier as a regular character, then escaping is
applied:

• \<metacharacter> (example: *, \+, \., \?)

• [<metacharacter>] (example: [+], [?], [*], if then follows a quantifier)

• java.util.regex is a package of the standard Java library containing major classes to work with regular
expressions.

• For processing Regular expression we need two classes
✓ Pattern – It is used to define a regular expression
✓Matcher – match the pattern against sequence.

Regular Expression processing(in java)

Pattern class

• Create a Pattern class object using compile method.
 static Pattern compile(String pattern)

• It is used to transform the string in pattern into a pattern that can be used
for pattern matching by Matcher .

• Create a Matcher class object using matcher() method provided by pattern.
 Matcher matcher(CharSequence str)

• str is the character sequence that the pattern will be matched against

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

Pattern (regular expression)

Input string to match the pattern

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#compile-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#matcher-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#matches--

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class RegExpDemo1 {

public static void main(String[] args) {

Pattern p;

Matcher m;

boolean found;

p=Pattern.compile("Java");

m=p.matcher("Java");

found=m.matches();

System.out.println("checking Java against Java");

if(found)

System.out.println("matches");

else

System.out.println("No match");

m=p.matcher("Java 9");

found=m.matches();

System.out.println("checking Java 9 against Java");

if(found)

System.out.println("matches");

else

System.out.println("No match");

}

}

Compiling the regular expression

To match the regular expression against
the sequence of characters

Using find() to match subsequences

import java.util.regex.Matcher;

import java.util.regex.Pattern;

public class RegularExpDemo {

public static void main(String[] args) {

Pattern p= Pattern.compile("test");

Matcher m=p.matcher("test 1 2 3 test");

while(m.find()) {

System.out.println("test found at "+m.start());

}

}

}

The method find() is designed to search for the next subsequence of characters in the input sequence that
matches the pattern.

There are two ways of how this method works:

• The search starts at the beginning of the given text.

• The search starts from the first character after the preceding match. This is possible only if the result of
the previous invocation of this method is true and the matcher has not been reset.

Matcher class
An engine that performs match operations on a character sequence by interpreting a Pattern.

A matcher is created from a pattern by invoking the pattern's matcher method. Once created, a
matcher can be used to perform three different kinds of match operations:
• The matches() method attempts to match the entire input sequence against the pattern.
• The lookingAt() method attempts to match the input sequence, starting at the beginning,

against the pattern.
• The find() method scans the input sequence looking for the next subsequence that matches the

pattern.

boolean find()Attempts to find the next subsequence of the input sequence that
matches the pattern.

boolean find(int start)Resets this matcher and then attempts to find the next
subsequence of the input sequence that matches the pattern, starting at the
specified index.

boolean matches()Attempts to match the entire region against the pattern.

boolean lookingAt()Attempts to match the input sequence, starting at the beginning of
the region, against the pattern.

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#find--
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#find-int-
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#matches--
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#lookingAt--

String replaceAll(String replacement)
Replaces every subsequence of the input sequence that matches the pattern with
the given replacement string.

String replaceFirst(String replacement)
Replaces the first subsequence of the input sequence that matches the pattern with
the given replacement string.

String group()
Returns the input subsequence matched by the previous match.

int start()Returns the start index of the previous match.

int end()Returns the offset after the last character matched.

Matcher class- methods (contd..)

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#replaceAll-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#replaceFirst-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#group--
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#start--
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#end--

static Pattern compile(String regex)
Compiles the given regular expression into a pattern.

static Pattern compile(String regex, int flags)
Compiles the given regular expression into a pattern with the given flags.

Matcher matcher(CharSequence input)
Creates a matcher that will match the given input against this pattern.

static boolean matches(String regex, CharSequence input)
Compiles the given regular expression and attempts to match the given input
against it.

String pattern()
Returns the regular expression from which this pattern was compiled.

int flags()
Returns this pattern's match flags.

Pattern class- methods

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#compile-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#compile-java.lang.String-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#matcher-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/lang/CharSequence.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#matches-java.lang.String-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/CharSequence.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#pattern--
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#flags--

Using wildcards and quantifiers

public class RegExpDemo2 {

public static void main(String[] args) {

String text = "This is my second java 45 project.\n" +

"It is wonderful to learn polysemantics and arrays.\n" +

"The weather is cold like it should be in winter, but we are all looking

forward to spring.";

Pattern p1 = Pattern.compile("\\b[\\w]{2}\\b");

Matcher m1 = p1.matcher(text);

while (m1.find()) {

int start = m1.start();

int end = m1.end();

System.out.println("Found matches " + text.substring(start,end) + " from

"+ start + " to " + (end-1) + " positions");

}

}

}

Note: In string literals describing a regular expression pattern, you can often see "\" (for example, for
metacharacters) . In Java, it has to be doubled for the compiler to interpret it correctly:

The regular expression \\b[\\w]{2}\\b matches two length words surrounded by non-characters

\b : to match word boundary i.e., non-character(all characters except letter , number and _)
[\\w] : to match word contains alphanumeric and underscore
[\\w]{2} : matches words of length 2 only.

Pattern p1 = Pattern.compile("\\b[\\w]{2}\\b");
Matcher m1 = p1.matcher(“This is my second java 45 project”);

m1.start() Returns the start index of previous match
i.e., start index of is,my and 45 which is 5,8 and 23

m1.end() Returns the offset after the last character matched i.e., 7, 10,
and 25

m1.group() Returns the input subsequence matched by the previous
match.

T h i s i s m y s e c o n d j a v a 4 5 p r … ..

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 …

file://b[/w]{2}/b

Requirement Regular Expression representation in Java

To match mobile Number Pattern p= Pattern . compile(“\\d{10}”);

To Match E-mail id
Pattern p= Pattern.compile(“[a-zA-Z.]+@[a-z]+\\.[a-z]+”);

To match both mobile number
and e-mail id

Pattern p=Pattern.compile("([a-zA-Z.]+@[a-z]+\\.[a-z]+)|(\\d{10})");

replaceFirst()
public class RegExpDemoReplace {

public static void main(String[] args) {

String text = "This is my second java 45 project.\n" +

"It is wonderful to learn polysemantics and arrays.\n" +

"The weather is cold like it should be in winter, but we are all looking

forward to spring.";

System.out.println("Before replace:\n"+text);

Pattern p1 = Pattern.compile("\\b[\\w]{2}\\b");

Matcher m1 = p1.matcher(text);

text=m1.replaceFirst("lab2");

System.out.println("After replacement:\n"+text);

}

}
Before replacement:

This is my second java 45 project.

It is wonderful to learn polysemantics and arrays.

The weather is cold like it should be in winter, but we are all looking forward to

spring.

After replacement:

This lab2 my second java 45 project.

It is wonderful to learn polysemantics and arrays.

The weather is cold like it should be in winter, but we are all looking forward to

spring.

replaceAll()
public class RegExpDemoReplace {

public static void main(String[] args) {

String text = "This is my second java 45 project.\n" +

"It is wonderful to learn polysemantics and arrays.\n" +

"The weather is cold like it should be in winter, but we are all looking

forward to spring.";

System.out.println("Before replace:\n"+text);

Pattern p1 = Pattern.compile("\\b[\\w]{2}\\b");

Matcher m1 = p1.matcher(text);

text=m1.replaceAll("lab2");

System.out.println("After replacement:\n"+text);

}

}

Before replacement:

This is my second java 45 project.

It is wonderful to learn polysemantics and arrays.

The weather is cold like it should be in winter, but we are all looking forward to

spring.

After replacement:

This lab2 lab2 second java lab2 project.

lab2 lab2 wonderful lab2 learn polysemantics and arrays.

The weather lab2 cold like lab2 should lab2 lab2 winter, but lab2 are all looking

forward lab2 spring.

System.out.println(Pattern.matches("J.+a","Java"));

System.out.println(Pattern.matches("J.+a","Java JavaScript"));

Two Pattern-matching options

1. Using compile and matcher method

Pattern p=Pattern.compile("J.+a");

Matcher m=p.matcher("Java");

System.out.println(m.matches());

2. Using matches method

Note: If the same pattern is using repeatedly ,then it is less efficient than method 1 (compile and use pattern-
matching methods of matcher class)

Reflection
The core reflection facility, java.lang.reflect, offers programmatic access to arbitrary classes.

Given a Class object, you can obtain Constructor, Method, and Field instances representing the

constructors, methods, and fields of the class represented by the Class instance. These objects provide

programmatic access to the class’s member names, field types, method signatures, and so on

You lose all the benefits of compile-time type checking, including exception checking. If a program attempts

to invoke a nonexistent or inaccessible method reflectively, it will fail at runtime unless you’ve taken special

precautions.

• The code required to perform reflective access is clumsy and verbose. It is tedious to write and difficult to

read.

• Performance suffers. Reflective method invocation is much slower than normal method invocation. Exactly

how much slower is hard to say, as there are many factors at work.

Reflection allows one class to use another, even if the latter class did not exist when the former was compiled.

There are a few sophisticated applications that require reflection. Examples include code analysis tools and

dependency injection frameworks

The sequence of actions for working with regular expressions

1. Create a regular expression pattern and compile its

internal representation(the static method compile() of

the Pattern class)

2. Associate the regular expression with the source text (the

method matcher() of the Pattern class).

3. Check to see if the match is successful(the method find()

of the Matcher class)

4. Request data(methods of the Matcher class).

5. Get additional information about the match(methods of

the Matcher class).

Pattern p1 = Pattern.compile("\\b[\\w]{2}\\b");
Matcher m1 = p1.matcher(text);
\b : to match word boundary i.e., non-character(all
characters except letter , number and _)
[\\w] : to match word contains alphanumeric and
underscore
[\\w]{2} : matches words of length 2 only.
Matches two character words in the text

text=“This is my second java 45 project”.
is ,my and 45 – which is surrounded by spaces(non-
character)

m1.start() Returns the start index of previous match
i.e., start index of is,my and 45 which is 5,8 and 23

m1.end() Returns the offset after the last character matched i.e., 7, 10,
and 25

m1.group() Returns the input subsequence matched by the previous
match. i.e., is , my, and 45

T h i s i s m y s e c o n d j a v a 4 5 p r … ..

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 …

	Slide 1: Unit-5
	Slide 2: Unit-5 content
	Slide 3: Regular Expression
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Regular Expression processing(in java)
	Slide 9: Pattern class
	Slide 10
	Slide 11
	Slide 12: Using find() to match subsequences
	Slide 13: Matcher class
	Slide 14: Matcher class- methods (contd..)
	Slide 15: Pattern class- methods
	Slide 16: Using wildcards and quantifiers
	Slide 17
	Slide 18
	Slide 19: replaceFirst()
	Slide 20: replaceAll()
	Slide 21
	Slide 22: Reflection
	Slide 23
	Slide 24
	Slide 25

