
1

UNIT-3

DESIGN CONCEPTS

2

Design

 Mitch Kapor, the creator of Lotus 1-2-3,

presented a “software design manifesto” in Dr.

Dobbs Journal. He said:

 Good software design should exhibit:

 Firmness: A program should not have any bugs that

inhibit its function.

 Commodity: A program should be suitable for the

purposes for which it was intended.

 Delight: The experience of using the program should

be pleasurable one.

3

Design

 Software design sits at the technical kernel of software

engineering and is applied regardless of the software process

model that is used.

 Each of the elements of the requirements model provides

information that is necessary to create the four design models

required for a complete specification of design.

 The flow of information during software design is illustrated in

Figure (below slide).

 The requirements model, manifested by scenario-based,

class-based, flow-oriented, and behavioural elements, feed

the design task. Using design notation and design methods,

design produces a data/class design, an architectural

design, an interface design, and a component design.

4

Analysis Model -> Design Model

Analysis Model

use-cases - text

use-case diagrams
activity diagrams

swim lane diagrams

data flow diagrams

control-flow diagrams
processing narratives

f l ow- or i e nt e d

e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d

e l e me nt s

sc e na r i o- ba se d

e l e me nt s

class diagrams
analysis packages

CRC models
collaboration diagrams

state diagrams

sequence diagrams
D a t a / Cla ss D e sign

A rc h it e c t u ra l D e sign

In t e rf a c e D e sign

Com pone nt -

Le v e l D e sign

Design Model

5

Design
 The data/class design transforms class models into design

class realizations and the requisite data structures required

to implement the software.

 The objects and relationships defined in the CRC diagram

and the detailed data content depicted by class attributes

and other notation provide the basis for the data design

action.

 Part of class design may occur in conjunction with the design of

software architecture.

 More detailed class design occurs as each software component

is designed.

6

Design
 The architectural design defines the relationship between

major structural elements of the software, the architectural

styles and design patterns that can be used to achieve the

requirements defined for the system, and the constraints that

affect the way in which architecture can be implemented.

 The architectural design representation—the framework of a

computer-based system—is derived from the requirements

model.

 The interface design describes how the software

communicates with systems that interoperate with it, and

with humans who use it.

7

Design
 An interface implies a flow of information (e.g., data and/or

control) and a specific type of behaviour.

 Therefore, usage scenarios and behavioral models provide

much of the information required for interface design.

 The component-level design transforms structural

elements of the software architecture into a procedural

description of software components.

 Information obtained from the class-based models, flow

models, and behavioural models serve as the basis for

component design.

8

Quality Guidelines
 A design should exhibit an architecture that

 (1) has been created using recognizable architectural styles or patterns,

 (2) is composed of components that exhibit good design characteristics
and

 (3) can be implemented in an evolutionary fashion. For smaller systems,
design can sometimes be developed linearly.

 A design should be modular; that is, the software should be logically
partitioned into elements or subsystems

 A design should contain distinct representations of data, architecture,
interfaces, and components.

 A design should lead to data structures that are appropriate for the classes to
be implemented and are drawn from recognizable data patterns.

 A design should lead to components that exhibit independent functional
characteristics.

 A design should lead to interfaces that reduce the complexity of connections
between components and with the external environment.

 A design should be derived using a repeatable method that is driven by
information obtained during software requirements analysis.

 A design should be represented using a notation that effectively
communicates its meaning.

9

Design and Quality

 The design must implement all of the explicit
requirements contained in the analysis model, and it must
accommodate all of the implicit requirements desired by the
customer.

 The design must be a readable, understandable guide
for those who generate code and for those who test and
subsequently support the software.

 The design should provide a complete picture of the
software, addressing the data, functional, and behavioral
domains from an implementation perspective.

10

Quality Attributes
 Quality Attributes. Hewlett-Packard [Gra87] developed a set of software quality

attributes that has been given the acronym FURPS—functionality, usability,

reliability, performance, and supportability. The FURPS quality attributes represent a

target for all software design:

 Functionality is assessed by evaluating the feature set and capabilities of the

program, the generality of the functions that are delivered, and the security of the

overall system.

 Usability is assessed by considering human factors, overall aesthetics, consistency,

and documentation.

 Reliability is evaluated by measuring the frequency and severity of failure, the

accuracy of output results, the mean-time-to-failure (MTTF), the ability to recover

from failure, and the predictability of the program.

 Performance is measured by considering processing speed, response time,

resource consumption, throughput, and efficiency.

 Supportability combines the ability to extend the program (extensibility),

adaptability, serviceability—these three attributes represent a more common term,

maintainability—and in addition, testability, compatibility, configurability (the ability to

organize and control elements of the software configuration, the ease with which a

system can be installed, and the ease with which problems can be localized.

11

Design Principles
 The design process should not suffer from „tunnel vision.‟

 The design should be traceable to the analysis model.

 The design should not reinvent the wheel.

 The design should “minimize the intellectual distance”
between the software and the problem as it exists in the real
world.

 The design should exhibit uniformity and integration.

 The design should be structured to accommodate change.

 The design should be structured to degrade gently, even
when aberrant data, events, or operating conditions are
encountered.

 Design is not coding, coding is not design.

 The design should be assessed for quality as it is being
created, not after the fact.

 The design should be reviewed to minimize conceptual
(semantic) errors.

From Davis [DAV95]

12

Fundamental Concepts
 Abstraction—data, procedure, control

 Architecture—the overall structure of the software

 Patterns—”conveys the essence” of a proven design solution

 Separation of concerns—any complex problem can be more easily
handled if it is subdivided into pieces

 Modularity—compartmentalization of data and function

 Hiding—controlled interfaces

 Functional independence—single-minded function and low coupling

 Refinement—elaboration of detail for all abstractions

 Aspects—a mechanism for understanding how global requirements
affect design

 Refactoring—a reorganization technique that simplifies the design

 OO design concepts—Appendix II

 Design Classes—provide design detail that will enable analysis
classes to be implemented

Design concepts provides the software designer with

a foundation from which more sophisticated design

methods can be applied.

 Each helps you answer the following

questions:

 What criteria can be used to partition

software into individual components?

 How is function or data structure detail

separated from a conceptual representation

of the software?

 What uniform criteria define the technical

quality of a software design?

13

14

Data Abstraction

door

implemented as a data structure

manufacturer
 model number
type
 swing direction
 inserts
 lights
 type
 number
 weight
 opening mechanism

 At the highest level of abstraction, a solution is stated in broad terms

using the language of the problem environment.

 At lower levels of abstraction, a more detailed description of the solution

is provided.

 There are two types of abstraction : Procedural abstraction, data

abstraction.

 A procedural abstraction refers to a sequence of instructions that have a

specific and limited function. The name of a procedural abstraction implies

these functions, but specific details are suppressed.

 An example of a procedural abstraction would be the word open for a

door.

 Open implies a long sequence of procedural steps (e.g., walk to the door,

reach out and grasp knob, turn knob and pull door, step away from moving

door, etc.)

15

Data Abstraction

Data Abstraction (contd..)
 A data abstraction is a named collection of data that describes a data

object. In the context of the procedural abstraction open, we can define

a data abstraction called door.

 Like any data object, the data abstraction for door would encompass a

set of attributes that describe the door (e.g., door type, swing direction,

opening mechanism, weight, dimensions).

 It follows that the procedural abstraction open would make use of

information contained in the attributes of the data abstraction door.

16

17

Procedural Abstraction

open

implemented with a "knowledge" of the

object that is associated with enter

details of enter
algorithm

18

Architecture
“The overall structure of the software and the ways in which that
structure provides conceptual integrity for a system.”

Architecture is the structure or organization of

program components (modules), the manner in

which these components interact, and the structure of

data that are used by the components.

One goal of software design is to derive an

architectural rendering of a system.

This rendering serves as a framework from which

more detailed design activities are conducted.

A set of architectural patterns enables a software

engineer to solve common design problems.

Architecture(contd.,)
 Shaw and Garlan describe a set of properties that should be specified as part

of an architectural design:

 Structural properties. This aspect of the architectural design representation

defines the components of a system (e.g., modules, objects, filters) and the

manner in which those components are packaged and interact with one

another. For example, objects are packaged to encapsulate both data and the

processing that manipulates the data and interact via the invocation of

methods

 Extra-functional properties. The architectural design description should

address how the design architecture achieves requirements for

performance, capacity, reliability, security, adaptability, and other

system characteristics.

 Families of related systems. The architectural design should draw upon

repeatable patterns that are commonly encountered in the design of families of

similar systems. In essence, the design should have the ability to reuse

architectural building blocks.

19

Architecture(contd.,)

 Given the specification of these properties, the architectural design can be

represented using one or more of a number of different models .

 Structural models represent architecture as an organized collection of

program components.

 Framework models increase the level of design abstraction by

attempting to identify repeatable architectural design frameworks that are

encountered in similar types of applications.

 Dynamic models address the behavioural aspects of the program

architecture, indicating how the structure or system configuration may

change as a function of external events.

 Process models focus on the design of the business or technical

process that the system must accommodate.

 functional models can be used to represent the functional hierarchy of a

system.

20

21

Patterns

Design Pattern Template

Pattern name—describes the essence of the pattern in a short but

expressive name

Intent—describes the pattern and what it does

Also-known-as—lists any synonyms for the pattern

Motivation—provides an example of the problem

Applicability—notes specific design situations in which the pattern is

applicable

Structure—describes the classes that are required to implement the pattern

Participants—describes the responsibilities of the classes that are required

to implement the pattern

Collaborations—describes how the participants collaborate to carry out their

responsibilities

Consequences—describes the “design forces” that affect the pattern and the

potential trade-offs that must be considered when the pattern is

implemented

Related patterns—cross-references related design patterns

Patterns(contd.)

 Design pattern describes a design structure that solves a

particular design problem within a specific context and

amid “forces” that may have an impact on the manner in

which the pattern is applied and used.

 Brad Appleton defines a design pattern in the following

manner: “A pattern is a named nugget of insight which

conveys the essence of a proven solution to a recurring

problem within a certain context amidst competing

concerns”

22

23

Separation of Concerns

 Any complex problem can be more easily handled if it is

subdivided into pieces that can each be solved and/or

optimized independently

 A concern is a feature or behavior that is specified as

part of the requirements model for the software

 By separating concerns into smaller, and therefore

more manageable pieces, a problem takes less effort

and time to solve.

Separation of Concerns (contd.)

 For two problems, p1 and p2, if the perceived complexity of p1 is

greater than the perceived complexity of p2, it follows that the effort

required to solve p1 is greater than the effort required to solve

p2.

 As a general case, this result is intuitively obvious. It does take more

time to solve a difficult problem.

 It also follows that the perceived complexity of two problems when

they are combined is often greater than the sum of the perceived

complexity when each is taken separately. This leads to a divide-and-

conquer strategy.

24

25

Modularity

 Modularity is the most common manifestation of separation of

concerns.

 Software is divided into separately named and addressable

components, sometimes called modules, that are integrated to satisfy

problem requirements.

 “Modularity is the single attribute of software that allows a

program to be intellectually manageable".

 Monolithic software (i.e., a large program composed of a single

module) cannot be easily grasped by a software engineer.

 The number of control paths, span of reference, number of variables, and

overall complexity would make understanding close to impossible.

 In almost all instances, you should break the design into many

modules, hoping to make understanding easier and as a consequence,

reduce the cost required to build the software.

26

Modularity: Trade-offs
What is the "right" number of modules

for a specific software design?

optimal number

 of modules

 cost of

 software

number of modules

module
integration

cost

module development cost

Modularity(contd.)
 The effort (cost) to develop an individual software module does

decrease as the total number of modules increases.

 Given the same set of requirements, more modules means smaller

individual size.

 As the number of modules grows, the effort (cost) associated with

integrating the modules also grows. These characteristics lead to a

total cost or effort curve shown in the figure.

 There is a number, M, of modules that would result in minimum

development cost, but we do not have the necessary sophistication to

predict M with assurance.

 Project should be modularized, but care should be taken to stay in the

vicinity of M.

 Undermodularity or overmodularity should be avoided. But how to

know the vicinity of M? How modular should you make software?

27

28

Information Hiding

module

controlled

 interface

"secret"

• algorithm

 • data structure

 • details of external interface

 • resource allocation policy

clients

a specific design decision

29

Why Information Hiding?

 Reduces the likelihood of “side effects”

 Limits the global impact of local design decisions

 Emphasizes communication through controlled

interfaces

 Discourages the use of global data

 Leads to encapsulation—an attribute of high quality

design

 Results in higher quality software

30

Information Hiding(contd.)

 The principle of information hiding suggests that

modules be “characterized by design decisions that

(each) hides from all others.”

 In other words, modules should be specified and

designed so that information (algorithms and data)

contained within a module is inaccessible to other

modules that have no need for such information.

Information Hiding(contd.)

 Hiding implies that effective modularity can be achieved by

defining a set of independent modules that

communicate with one another only that information

necessary to achieve software function.

 Abstraction helps to define the procedural (or

informational) entities that make up the software.

 Hiding defines and enforces access constraints to both

procedural detail within a module and any local data

structure used by the module

31

Information Hiding advantages

 The use of information hiding as a design criterion for

modular systems provides the greatest benefits when

modifications are required during testing and later

during software maintenance.

32

33

Stepwise Refinement
open

walk to door;
 reach for knob;

 open door;

 walk through;
 close door.

repeat until door opens
 turn knob clockwise;
 if knob doesn't turn, then
 take key out;
 find correct key;
 insert in lock;
 endif
 pull/push door
move out of way;
 end repeat

34

Sizing Modules: Two Views

MODULE

What's
inside??

How big
is it??

35

Functional Independence
 Functional independence is achieved by developing modules with

"single-minded" function and an "aversion" to excessive interaction
with other modules.

 Independence is assessed using two qualitative criteria: cohesion
and coupling.

 Cohesion is an indication of the relative functional strength of a
module.
 A cohesive module performs a single task, requiring little interaction

with other components in other parts of a program. Stated simply, a
cohesive module should (ideally) do just one thing.

 Coupling is an indication of the relative interdependence among
modules.
 Coupling depends on the interface complexity between modules, the

point at which entry or reference is made to a module, and what data
pass across the interface.

Functional Independence(contd.)
 Software with effective modularity, that is, independent modules, is easier to

develop because function can be compartmentalized and interfaces are

simplified

 Independent modules are easier to maintain (and test) because secondary

effects caused by design or code modification are limited, error propagation

is reduced, and reusable modules are possible.

 To summarize, functional independence is a key to good design, and

design is the key to software quality.

 Always strive for high cohesion (i.e., single-mindedness), it is often necessary

and advisable to have a software component perform multiple functions.

 Simple connectivity among modules results in software that is easier to

understand and less prone to a “ripple effect”, caused when errors occur at

one location and propagate throughout a system.

36

Refinement

 Stepwise refinement is a top-down design strategy

originally proposed by Niklaus Wirth .

 A program is developed by successively refining levels of

procedural detail.

 A hierarchy is developed by decomposing a

macroscopic statement of function (a procedural

abstraction) in a stepwise fashion until programming

language statements are reached.

37

Refinement (contd.)

 Refinement is actually a process of elaboration. Begin

with a statement of function (or description of information)

that is defined at a high level of abstraction.

 The statement describes function or information

conceptually but provides no information about the

internal workings of the function or the internal structure

of the information.

 Then elaborate on the original statement, providing more

and more detail as each successive refinement

(elaboration) occurs.
38

39

Aspects

 Consider two requirements, A and B. Requirement A

crosscuts requirement B “if a software decomposition

[refinement] has been chosen in which B cannot be

satisfied without taking A into account.

 An aspect is a representation of a cross-cutting concern.

40

Aspects—An Example
 Consider two requirements for the SafeHomeAssured.com WebApp.

Requirement A is described via the use-case Access camera
surveillance via the Internet. A design refinement would focus on
those modules that would enable a registered user to access video
from cameras placed throughout a space. Requirement B is a generic
security requirement that states that a registered user must be
validated prior to using SafeHomeAssured.com. This requirement is
applicable for all functions that are available to registered SafeHome
users. As design refinement occurs, A* is a design representation
for requirement A and B* is a design representation for
requirement B. Therefore, A* and B* are representations of
concerns, and B* cross-cuts A*.

 An aspect is a representation of a cross-cutting concern. Therefore,
the design representation, B*, of the requirement, a registered user
must be validated prior to using SafeHomeAssured.com, is an aspect
of the SafeHome WebApp.

41

Refactoring
 Fowler defines refactoring in the following

manner:

 "Refactoring is the process of changing a software

system in such a way that it does not alter the external
behavior of the code [design] yet improves its internal
structure.”

 When software is refactored, the existing design is

examined for
 redundancy
 unused design elements
 inefficient or unnecessary algorithms
 poorly constructed or inappropriate data structures
 or any other design failure that can be corrected to yield

a better design.

Refactoring(contd.)

 For example, a first design iteration might yield a

component that exhibits low cohesion (i.e., it performs

three functions that have only limited relationship to one

another).

 After careful consideration, decide the component should

be refactored into three separate components, each

exhibiting high cohesion.

42

43

OO Design Concepts

 Design classes

 Entity classes (bank account)

 Boundary classes (Windows, screens and menus are examples

of boundaries that interface with users.)

 Controller classes (business logic or other)

 Inheritance—all responsibilities of a super class is

immediately inherited by all subclasses

 Messages—stimulate some behavior to occur in the

receiving object

 Polymorphism—a characteristic that greatly reduces the

effort required to extend the design

44

Design Classes
 Analysis classes are refined during design to become entity classes

 Boundary classes are developed during design to create the interface
(e.g., interactive screen or printed reports) that the user sees and
interacts with as the software is used.

 Boundary classes are designed with the responsibility of managing the way
entity objects are represented to users.

 Controller classes are designed to manage

 the creation or update of entity objects;

 the instantiation of boundary objects as they obtain information from
entity objects;

 complex communication between sets of objects;

 validation of data communicated between objects or between the user and
the application.

Five different types of design classes, each representing a different layer

 of the design architecture, can be developed

 User interface classes define all abstractions that are necessary for human

computer interaction (HCI). In many cases, HCI occurs within the context of a

metaphor (e.g., a checkbook, an order form, a fax machine), and the design

classes for the interface may be visual representations of the elements of the

metaphor.

 Business domain classes are often refinements of the analysis classes defined

earlier. The classes identify the attributes and services (methods) that are

required to implement some element of the business domain.

 Process classes implement lower-level business abstractions required to fully

manage the business domain classes.

 Persistent classes represent data stores (e.g., a database) that will persist beyond

the execution of the software.

 System classes implement software management and control functions that enable

the system to operate and communicate within its computing environment and

with the outside world.

45

Arlow and Neustadt suggest that each design class be

reviewed to ensure that it is “well-formed.” They define four

characteristics of a well-formed design class:

 Complete and sufficient. A design class should be the complete

encapsulation of all attributes and methods that can reasonably be expected

(based on a knowledgeable interpretation of the class name) to exist for the

class. For example, the class Scene defined for video-editing software is

complete only if it contains all attributes and methods that can reasonably

be associated with the creation of a video scene. Sufficiency ensures that the

design class contains only those methods that are sufficient to achieve the

intent of the class, no more and no less.

 Primitiveness. Methods associated with a design class should be

focused on accomplishing one service for the class. Once the service has

been implemented with a method, the class should not provide another way to

accomplish the same thing. For example, the class VideoClip for video-

editing software might have attributes start-point and end-point to indicate the

start and end points of the clip (note that the raw video loaded into the system

may be longer than the clip that is used). The methods, setStartPoint() and

setEndPoint(), provide the only means for establishing start and end

points for the clip.

46

 High cohesion. A cohesive design class has a small, focused set of

responsibilities and single-mindedly applies attributes and methods to

implement those responsibilities. For example, the class VideoClip might

contain a set of methods for editing the video clip. As long as each method

focuses solely on attributes associated with the video clip, cohesion is

maintained.

 Low coupling. Within the design model, it is necessary for design

classes to collaborate with one another. However, collaboration should be

kept to an acceptable minimum. If a design model is highly coupled (all

design classes collaborate with all other design classes), the system is

difficult to implement, to test, and to maintain over time. In general, design

classes within a subsystem should have only limited knowledge of other

classes. This restriction, called the Law of Demeter, suggests that a

method should only send messages to methods in neighbouring classes.

47

48

The Design Model

process dimension

archit ect ure

element s

int erface

element s

component -level

element s

deployment -level

element s

low

high

class diagrams

analysis packages

CRC models

collaborat ion diagrams

use-cases - t ext

use-case diagrams

act ivit y diagrams

sw im lane diagrams

collaborat ion diagrams dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

st at e diagrams

sequence diagrams

st at e diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

ref inement s t o:

deployment diagrams

class diagrams

analysis packages

CRC models

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

ref inement s t o:

component diagrams

design classes

act ivit y diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

a na ly sis mode l

de sign mode l

Requirement s:

 const raint s

 int eroperabilit y

 t arget s and

 conf igurat ion

t echnical int erf ace

 design

Navigat ion design

GUI design

Design Model Elements

 Data elements

 Data model --> data structures

 Data model --> database architecture

 Architectural elements

 Application domain

 Analysis classes, their relationships, collaborations and behaviors are transformed into design
realizations

 Patterns and “styles”

 Interface elements

 the user interface (UI)

 external interfaces to other systems, devices, networks or other producers or consumers of
information

 internal interfaces between various design components.

 Component elements

 Deployment elements

49

Data elements

 The design model can be viewed in two different

dimensions as illustrated in above figure

 The process dimension indicates the evolution of the

design model as design tasks are executed as part of

the software process.

 The abstraction dimension represents the level of

detail as each element of the analysis model is

transformed into a design equivalent and then refined

iteratively.

 The dashed line indicates the boundary between the

analysis and design models.

50

Data elements(contd.,)

 The elements of the design model use many of the same

UML diagrams that were used in the analysis model.

 The difference is that these diagrams are refined and

elaborated as part of design; more implementation-

specific detail is provided, and architectural structure and

style, components that reside within the architecture, and

interfaces between the components and with the outside

world are all emphasized.

51

Data elements(contd.,)

 Data design (sometimes referred to as data architecting)

creates a model of data and/or information that is

represented at a high level of abstraction (the

customer/user‟s view of data)

 At the program component level, the design of data

structures and the associated algorithms required to

manipulate them is essential to the creation of high-quality

applications.

52

Data elements(contd.,)

 At the application level, the translation of a data

model (derived as part of requirements engineering) into

a database is pivotal to achieving the business

objectives of a system.

 At the business level, the collection of information

stored in disparate databases and reorganized into a

“data warehouse” enables data mining or knowledge

discovery that can have an impact on the success of the

business itself.

53

Architectural Design Elements

 The architectural model is derived from three sources:

 (1) information about the application domain for the software to be

built;

 (2) specific requirements model elements such as data flow

diagrams or analysis classes, their relationships and

collaborations for the problem at hand; and

 (3) the availability of architectural styles

54

Interface Design Elements

 There are three important elements of interface design:

 (1) the user interface (UI);

 (2) external interfaces to other systems, devices, networks, or

other producers or consumers of information; and

 (3) internal interfaces between various design components.

 These interface design elements allow the software to

communicate externally and enable internal

communication and collaboration among the

components that populate the software architecture.

55

Interface Design Elements(contd.,)

 If the classic input-process-output approach to design is

chosen, the interface of each software component is

designed based on data flow representations and the

functionality described in a processing narrative.

 In UML, an interface is defined as “An interface is a

specifier for the externally-visible [public] operations of a

class, component, or other classifier (including

subsystems) without specification of internal

structure.

 ” An interface is a set of operations that describes some

part of the behaviour of a class and provides access to

these operations.

56

Interface Design Elements(contd.,)

 For example, the SafeHome security function makes use

of a control panel that allows a homeowner to control

certain aspects of the security function.

 In an advanced version of the system, control panel

functions may be implemented via a wireless PDA or

mobile phone.

 The ControlPanel class provides the behavior

associated with a keypad, and therefore, it must

implement the operations readKeyStroke () and

decodeKey ().

57

Interface Design Elements(contd.,)

 If these operations are to be provided to other classes (in

this case, WirelessPDA and MobilePhone), it is useful

to define an interface as shown in the figure.

 The interface, named KeyPad, is shown as an

<<interface>> stereotype or as a small, labelled circle

connected to the class with a line.

 The interface is defined with no attributes and the set

of operations that are necessary to achieve the

behaviour of a keypad.

58

59

Interface Elements

Cont rolPanel

LCDdisplay

LEDindicat ors

keyPadCharact er ist ics

speaker

wirelessInt erf ace

readKeySt roke()

decodeKey ()

displaySt at us()

light LEDs()

sendCont rolMsg()

Figure 9 .6 UML int erface represent at ion for Co n t ro lPa n e l

KeyPad

readKeyst roke()

decodeKey()

< < int erface> >

WirelessPDA

KeyPad

MobilePhone

Interface Elements(contd.,)

 The dashed line with an open triangle at its end indicates

that the ControlPanel class provides KeyPad

operations as part of its behaviour. In UML, this is

characterized as a realization. That is, part of the

behaviour of ControlPanel will be implemented by

realizing KeyPad operations.

 These operations will be provided to other classes that

access the interface.

60

61

Component Elements

SensorManagement
Sensor

Component Elements(contd.,)

 The component-level design for software fully describes the

internal detail of each software component.

 To accomplish this, the component-level design defines data

structures for all local data objects and algorithmic detail

for all processing that occurs within a component and an

interface that allows access to all component operations

(behaviors).

 A component named SensorManagement (part of the

SafeHome security function) is represented.

 A dashed arrow connects the component to a class named

Sensor that is assigned to it. The SensorManagement

component performs all functions associated with

SafeHome sensors including monitoring and configuring

them. 62

Component Elements(contd.,)

 A UML activity diagram can be used to represent

processing logic.

 Detailed procedural flow for a component can be

represented using either pseudocode (a programming

language-like representation or some other diagrammatic

form (e.g., flowchart or box diagram).

63

64

Deployment Elements

Figure 9 .8 UML deploym ent diagram for SafeHom e

Personal comput er

Security

homeManagement

Surveillance

communication

Cont rol Panel CPI server

Security homeownerAccess

externalAccess

Deployment Elements(contd.,)

 Deployment-level design elements indicate how software

functionality and subsystems will be allocated within the

physical computing environment that will support

 The software. For example, the elements of the SafeHome

product are configured to operate within three primary

computing environments—a home-based PC, the

SafeHome control panel, and a server housed at CPI

Corp. (providing Internet-based access to the system).

65

Deployment Elements(contd.,)

 The subsystems (functionality) housed within each

computing element are indicated.

 For example, the personal computer houses subsystems that

implement security, surveillance, home management,

and communications features.

 An external access subsystem has been designed to

manage all attempts to access the SafeHome system from

an external source.

 Each subsystem would be elaborated to indicate the

components that it implements.

66

Deployment Elements(contd.,)
 The diagram shown in Figure above is in descriptor form. This

means that the deployment diagram shows the computing

environment but does not explicitly indicate configuration

details.

 For example, the “personal computer” is not further identified.

 It could be a Mac or a Windows-based PC, a Sun

workstation, or a Linux-box.

 These details are provided when the deployment diagram

is revisited in instance form during the latter stages of design

or as construction begins.

 Each instance of the deployment (a specific, named hardware

configuration) is identified.

67

1

Chapter 9

Architectural Design

Architectural Styles

 An architectural style is a transformation that is

imposed on the design of an entire system

 The intent is to establish a structure for all

components of the system.

 An architectural pattern, like an architectural style,

imposes a transformation on the design of an

architecture.

 However, a pattern differs from a style in a number of

fundamental ways:

2

Architectural Styles(contd.,)

 (1) The scope of a pattern is less broad, focusing on one

aspect of the architecture rather than the architecture in its

entirety;

 (2) A pattern imposes a rule on the architecture, describing

how the software will handle some aspect of its functionality at

the infrastructure level (e.g., concurrency)

 (3)Architectural patterns tend to address specific

behavioural issues within the context of the architecture

 (e.g., how real-time applications handle synchronization or interrupts).

3

4

Architectural Styles(contd.,)

 Data-centered architectures

 Data flow architectures

 Call and return architectures

 Object-oriented architectures

 Layered architectures

Each style describes a system category that encompasses:

(1) a set of components (e.g., a database, computational modules) that
perform a function required by a system,

(2) a set of connectors that enable “communication, coordination and
cooperation” among components,

(3) constraints that define how components can be integrated to form the
system, and

(4) semantic models that enable a designer to understand the overall
properties of a system by analyzing the known properties of its
constituent parts.

5

Data-Centered Architecture

Data-Centered Architecture

 A data store (e.g., a file or database) resides at the centre of

this architecture and is accessed frequently by other

components that update, add, delete, or otherwise modify data

within the store.

 Figure above illustrates a typical data-centred style.

 Client software accesses a central repository.

 In some cases the data repository is passive. That is, client

software accesses the data independent of any changes to

the data or the actions of other client software.

6

Data-Centered Architecture(contd.,)

 Data-centred architectures promote integrability . That is,

existing components can be changed and new client

components added to the architecture without concern about

other clients because the client components operate

independently.

 Data can be passed among clients using the blackboard

mechanism (i.e., the blackboard component serves to

coordinate the transfer of information between clients).

 Eg for black board style is Online chatting

 Client components independently execute processes.

 Example of data-centred architectures is the Web architecture

7

8

Data Flow Architecture

Data Flow Architecture(contd.,)

 This architecture is applied when input data are to be

transformed through a series of computational or

manipulative components into output data.

 A pipe-and-filter pattern (Figure above) has a set of

components, called filters, connected by pipes that transmit

data from one component to the next.

 Each filter works independently of those components

upstream and downstream, is designed to expect data input

of a certain form, and produces data output to the next

filter of a specified form.

 The filter does not require knowledge of the workings of its

neighbouring filters.
9

Data Flow Architecture(contd.,)

 If the data flow degenerates into a single line of

transforms, it is termed batch sequential.

 This structure accepts a batch of data and then applies a

series of sequential components (filters) to transform it.

 Examples of pipes and filter

 lex/yacc-based compiler (scan, parse, generate…)

 Unix pipes

 Image / signal processing

 Examples of batch processing

 Payroll computations

 Tax reports

10

11

Call and Return Architecture

Call and Return Architecture(contd.,)

 This architectural style enables you to achieve a program

structure that is relatively easy to modify and scale.

 A number of substyles exist within this category:

 Main program/subprogram architectures. This classic program

structure decomposes function into a control hierarchy where a

“main” program invokes a number of program components

that in turn may invoke still other components. Figure above

illustrates an architecture of this type.

 Remote procedure call architectures. The components of a

main program/subprogram architecture are distributed across

multiple computers on a network.

12

Call and Return Architecture(contd.,)

 Example dynamic binding object 2D-Shape

 2D-Shape defines method Perimeter(): Real

 Same operation, but implemented differently for Triangle,

Square, and Circle.

 If an object A is of any subtype of 2D-Shape a consumer may

call A.Perimeter(), and the appropriate method will be chosen at

run-time

13

2 D - shape

Polygon Circle

Traingle Square

Object Oriented Style

14

Object Oriented Style(contd.,)

 The object-oriented paradigm, emphasizes the bundling of

data and methods to manipulate and access that data

(Public Interface).

 Components of a system summarize data and the

operations that must be applied to manipulate the data.

 Communication and coordination between components is

accomplished via message passing.

 Examples of object-oriented architecture systems are the IBM

System 38, the Carnegie-Mellon experimental C.

15

16

Layered Architecture

Layered Architecture(contd.,)
 The basic structure of a layered architecture is illustrated in

Figure above.

 A number of different layers are defined, each accomplishing

operations that progressively become closer to the

machine instruction set.

 At the outer layer, components service user interface

operations.

 At the inner layer, components perform operating system

interfacing.

 Intermediate layers provide utility services and application

software functions.

 Eg: OSI Network layer is an example of Layered Architecture

17

 These architectural styles are only a small subset of

those available.

 Once requirements engineering uncovers the

characteristics and constraints of the system to be built,

the architectural style and/or combination of patterns

that best fits those characteristics and constraints

can be chosen.

 In many cases, more than one pattern might be

appropriate and alternative architectural styles can be

designed and evaluated.

 For example, a layered style-appropriate for most

systems-can be combined with a data-centered

architecture in many database applications.

18

19

Architectural Patterns
 Concurrency—applications must handle multiple tasks in a

manner that simulates parallelism

 operating system process management pattern

 task scheduler pattern

 Persistence—Data persists if it survives past the execution of
the process that created it. Two patterns are common:

 a database management system pattern that applies the storage
and retrieval capability of a DBMS to the application architecture

 an application level persistence pattern that builds persistence
features into the application architecture

 Distribution— the manner in which systems or components
within systems communicate with one another in a distributed
environment

 A broker acts as a ‘middle-man’ between the client component and a
server component.

20

Architectural Design

 The software to be developed must be placed into context

 the design should define the external entities (other systems,

devices, people) that the software interacts with and the nature of the

interaction

 A set of architectural archetypes should be identified

 An archetype is an abstraction (similar to a class) that

represents one element of system behavior

 The designer specifies the structure of the system by

defining and refining software components that

implement each archetype.

 This process continues iteratively until a complete

architectural structure has been derived.

Safehome Security Function

21

22

23

Architectural Context of Safehome

security function

target system:

Security Function
uses

uses peershomeowner

Safehome

Product
Internet-based

system

surveillance

function

sensors

control

panel

sensors

uses

Architectural Context(contd.,)

 At the architectural design level, a software architect

uses an architectural context diagram (ACD) to model

the manner in which software interacts with entities

external to its boundaries.

 The generic structure of the architectural context diagram

is illustrated in Figure above.

 Referring to the figure, systems that interoperate with the

target system (the system for which an architectural

design is to be developed) are represented as:

24

Architectural Context(contd.,)

 Superordinate systems—those systems that use the target

system as part of some higher-level processing scheme.

 Subordinate systems—those systems that are used by the

target system and provide data or processing that are

necessary to complete target system functionality.

 Peer-level systems—those systems that interact on a peer-to-

peer basis (i.e., information is either produced or consumed

by the peers and the target system.

 Actors—entities (people, devices) that interact with the target

system by producing or consuming information that is

necessary for requisite processing.

 Each of these external entities communicates with the

target system through an interface (the small shaded

rectangles).

25

Architectural Context(contd.,)
 Consider the home security function of the SafeHome product.

 The overall SafeHome product controller and the Internet-

based system are both superordinate to the security function

and are shown above the function in Figure above.

 The surveillance function is a peer system and uses (is

used by) the home security function in later versions of the

product.

 The homeowner and control panels are actors that are both

producers and consumers of information used/produced by the

security software.

 Finally, sensors are used by the security software and are

shown as subordinate to it.

26

27

Archetypes

Figure 10.7 UML relat ionships for SafeHome security funct ion archetypes

(adapted f rom [BOS00])

Cont roller

Node

communicates with

Detector Indicator

Defining Archetypes

 An archetype is a class or pattern that represents a core

abstraction that is critical to the design of an architecture

for the target system.

 A relatively small set of archetypes is required to design

even relatively complex systems.

 The target system architecture is composed of these

archetypes, which represent stable elements of the

architecture but may be instantiated many different ways

based on the behaviour of the system.

 Archetypes can be derived by examining the analysis

classes defined as part of the requirements model.

28

Defining Archetypes(contd.,)
 In the SafeHome home security function, archetypes are

defined as follows:

 Node. Represents a cohesive collection of input and output elements

of the home security function. For example a node might be comprised of (1)

various sensors and (2) a variety of alarm (output) indicators.

 Detector. An abstraction that encompasses all sensing equipment that

feeds information into the target system.

 Indicator. An abstraction that represents all mechanisms (e.g., alarm

siren, flashing lights, bell) for indicating that an alarm condition is

occurring.

 Controller. An abstraction that depicts the mechanism that allows the

arming or disarming of a node. If controllers reside on a network, they have

the ability to communicate with one another.

 The archetypes form the basis for the architecture but are abstractions

that must be further refined as architectural design proceeds.

 Detector might be refined into a class hierarchy of sensors.

29

Refining the Architecture into Components

 As the software architecture is refined into components,

the structure of the system begins to emerge.

 Sources of Architectural elements

 Analysis classes represent entities within the application

(business) domain that must be addressed within the software

architecture.

 Hence, the application domain is one source for the derivation

and refinement of components.

 Another source is the infrastructure domain.

 The architecture must accommodate many infrastructure

components that enable application components but have no

business connection to the application domain.

 For example, memory management components, communication

components, data base components, and task management

components are often integrated into the software architecture.

30

Refining the Architecture into Components(contd.,)

 The SafeHome home security function example, define

the set of top-level components that address the

following functionality:

 External communication management—coordinates

communication of the security function with external entities

such as other Internet-based systems and external alarm

notification.

 Control panel processing—manages all control panel

functionalities.

 Detector management—coordinates access to all detectors

attached to the system.

 Alarm processing—verifies and acts on all alarm

conditions.

31

Refining the Architecture into Components(contd.,)

 Each of these top-level components would have to be

elaborated iteratively and then positioned within the

overall SafeHome architecture.

 Design classes, with appropriate attributes and

operations, would be defined for each.

 The design details of all attributes and operations

would not be specified until component-level design

32

 Transactions are acquired by external communication

management as they move in from components that

process the SafeHome GUI and the internet interface.

 This information is managed by a SafeHome executive

component that selects the appropriate product function (in

this case security).

 The control panel processing component interacts

with the homeowner to arm/disarm the security function.

 The detector management component polls sensors to

detect an alarm condition,

 The alarm processing component produces output

when an alarm is detected.
33

34

Component Structure

SafeHome

Execut ive

Ext ernal

Communicat ion

Management

GUI Int ernet

Int erface

Funct ion

select ion

Securit y Surveillance Home

management

Cont rol

panel

processing

det ect or

management

alarm

processing

35

Refined Component Structure

sensor
sensor

sensor
sensor

sensor
sensor
sensor

sensor

Ext ernal

Communicat ion

Management

GUI Internet

Interface

Security

Cont ro l

panel

processing

det ect or

m anagem ent

alarm

processing

Key pad

processing

CP disp lay

funct ions

scheduler

sensor
sensor
sensor
sensor

phone

com m unicat ion

alarm

SafeHome

Execut ive

Describing Instantiations of the System

 The architectural design that has been modelled to this

point is still relatively high level.

 The context of the system has been represented,

archetypes that indicate the important abstractions

within the problem domain have been defined, the

overall structure of the system is apparent, and the major

software components have been identified.

 Further refinement, since design is iterative, is still

necessary.

36

Describing Instantiations of the System(contd.,)

 To accomplish this, an actual instantiation of the architecture

is developed.

 By this, the architecture is applied to a specific problem with

the intent of demonstrating that the structure and components

are appropriate.

 Components shown in Figure above are elaborated to

show additional detail.

 For example, the detector management component

interacts with a scheduler infrastructure component that

implements polling of each sensor object used by the

security system.

37

Agility and Architecture

 To avoid rework, user stories are used to

create and evolve an architectural model

(walking skeleton) before coding

 Hybrid models which allow software architects

contributing users stories to the evolving

storyboard

 Well run agile projects include delivery of work

products during each sprint

 Reviewing code emerging from the sprint can

be a useful form of architectural review

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 38

