

Requirement Engineering

 The process of collecting the software

requirement from the client then understand,

evaluate and document it is called as

requirement engineering.

 Requirements engineering (RE) is the

process of establishing the services that the

customer requires from a system and the

constraints under which it operates and is

developed.

 Requirement engineering constructs a bridge

for design and construction.

1

Requirement Engineering

Tasks

 1. Inception

 Inception is a task where the requirement engineering asks a

set of questions to establish a software process.

 In this task, it understands the problem and evaluates with the

proper solution.

 It collaborates with the relationship between the customer and

the developer.

 The developer and customer decide the overall scope and the

nature of the question

2

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 3

 Elicitation

Elicitation means to find the requirements from anybody.

The requirements are difficult because the following

problems occur in elicitation.

Problem of scope: The customer give the unnecessary technical

detail rather than clarity of the overall system objective.

Problem of understanding: Poor understanding between the

customer and the developer regarding various aspect of the

project like capability, limitation of the computing environment.

Problem of volatility: In this problem, the requirements change

from time to time and it is difficult while developing the project.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 4

 Elaboration

 In this task, the information taken from user during inception

and elaboration and are expanded and refined in elaboration.

 Negotiation

 In negotiation task, a software engineer decides the how will

the project be achieved with limited business resources.

 Specification

 In this task, the requirement engineer constructs a final work

product.

 The work product is in the form of software requirement

specification.

 In this task, formalize the requirement of the proposed software

such as informative, functional and behavioral.

Requirement Engineering

Tasks

 Validation

 The work product is built as an output of the requirement

engineering and that is accessed for the quality through a

validation step.

 Requirement management

 It is a set of activities that help the project team to identify,

control and track the requirements and changes can be made

to the requirements at any time of the ongoing project.

5

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 6

Establishing the groundwork

Requirements engineering is simply a matter of conducting

meaningful conversations with colleagues who are well-known

members of the team

• Identifying Stakeholders

• Recognizing Multiple Viewpoints

• Working toward Collaboration

• Asking the First Questions

• Non Functional requirements

• Traceability

7

Eliciting Requirements
 Collaborative Requirements Gathering:

 Guideslines to be followed

 goal

 lists to be prepared

 QFD Purpose,

 Types of QFDs

 Customer voice table

 Purpose of CVT

 Usage scenarios

 Work products produced

8

Eliciting Requirements
 Requirements elicitation (also called requirements gathering) combines

elements of problem solving, elaboration, negotiation, and

specification.

Collaborative Requirements Gathering:

Guideslines to be followed
 Meetings are conducted and attended by both software engineers and

customers

 Rules for preparation and participation are established

 An agenda is suggested that is formal enough to cover all important points but
informal enough to encourage the free flow of ideas.

 A "facilitator" (can be a customer, a developer, or an outsider) controls the
meeting

 A "definition mechanism" (can be work sheets, flip charts, or wall stickers or an
electronic bulletin board, chat room or virtual forum) is used

 The goal is

 to identify the problem

 propose elements of the solution

 negotiate different approaches, and

 specify a preliminary set of solution requirements

9

Eliciting Requirements
 During inception basic questions and answers establish the scope of the

problem and the overall perception of a solution.

 Out of these initial meetings, the developer and customers write a one-

or two-page “product request.”

 A meeting place, time, and date are selected; a facilitator is chosen; and

attendees from the software team and other stakeholder organizations are

invited to participate.

 The product request is distributed to all attendees before the meeting

date.

 E.g.: Safe Home Security function

 Marketing person writes the following narrative:
 Our research indicates that the market for home management systems is

growing at a rate of 40 per cent per year. The first Safe Home function we

bring to market should be the home security function. Most people are

familiar with “alarm systems” so this would be an easy sell.

 The home security function would protect against and/or recognize a

variety of undesirable “situations” such as illegal entry, fire, flooding,

carbon monoxide levels, and others.

10

Eliciting Requirements

 While reviewing the product request in the days before the meeting,

 each attendee is asked to make a list of objects that are part of the

environment that surrounds the system,

 other objects that are to be produced by the system, and

 objects that are used by the system to perform its functions.

o Each attendee is asked to make another list of services (processes or

functions) that manipulate or interact with the objects.

o Lists of constraints (e.g., cost, size, business rules) and performance

criteria (e.g., speed, accuracy) are also developed.

 The attendees are informed that the lists are not expected to be

exhaustive but are expected to reflect each person’s perception of the

system.

 Objects described for Safe Home might include the control panel,

smoke detectors, window and door sensors, motion detectors, an

alarm, an event (a sensor has been activated), a display, a PC,

telephone numbers, a telephone call, and so on. The list of services

might include configuring the system, setting the alarm, monitoring

the sensors, dialling the phone, programming the control panel, and

reading the display(note that services act on objects).

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 11

12

Quality Function Deployment

 Function deployment determines the ―value‖

(as perceived by the customer) of each

function required of the system

 Information deployment identifies data

objects and events

 Task deployment examines the behavior of

the system

 Value analysis determines the relative priority

of requirements

13

Quality Function Deployment

 Quality function deployment (QFD) is a quality

management technique that translates the needs of

the customer into technical requirements for software.

 QFD ―concentrates on maximizing customer

satisfaction from the software engineering process‖.

 To accomplish this, QFD emphasizes an understanding

of what is valuable to the customer and then deploys

these values throughout the engineering process.

14

Quality Function Deployment
 QFD identifies three types of requirements.

 Normal requirements. The objectives and goals that are stated for a

product or system during meetings with the customer. If these

requirements are present, the customer is satisfied.

• Examples of normal requirements might be requested types of

graphical displays, specific system functions, and defined levels of

performance.

 Expected requirements. These requirements are implicit to the product

or system and may be so fundamental that the customer does not

explicitly state them. Their absence will be a cause for significant

dissatisfaction.

• Examples of expected requirements are: ease of human/machine

interaction, overall operational correctness and reliability, and ease of

software installation.

 Exciting requirements. These features go beyond the customer’s

expectations and prove to be very satisfying when present.

• For example, software for a new mobile phone comes with standard

features, but is coupled with a set of unexpected capabilities (e.g., multi

touch screen, visual voice mail) that delight every user of the product.

15

Quality Function Deployment

 QFD uses customer interviews and observation, surveys,

and examination of historical data (e.g., problem reports)

as raw data for the requirements gathering activity.

 These data are then translated into a table of

requirements—called the customer voice table—that is

reviewed with the customer and other stakeholders.

 A variety of diagrams, matrices, and evaluation methods are

then used to extract expected requirements and to attempt

to derive exciting requirements

16

Usage Scenarios
 As requirements are gathered, an overall vision of system

functions and features begins to materialize.

 These are used to understand how these functions and

features will be used by different classes of end users.

 To accomplish this, developers and users can create a set of

scenarios that identify a thread of usage for the system to

be constructed.

 The scenarios, often called use cases, provide a description of

how the system will be used.

17

Elicitation Work Products
 The work products produced as a consequence of requirements elicitation

will vary depending on the size of the system or product to be built.

 For most systems, the work products include

 a statement of need and feasibility.

 a bounded statement of scope for the system or product.

 a list of customers, users, and other stakeholders who participated
in requirements elicitation

 a description of the system’s technical environment.

 a list of requirements (preferably organized by function) and the
domain constraints that apply to each.

 a set of usage scenarios that provide insight into the use of the
system or product under different operating conditions.

 any prototypes developed to better define requirements.

 Each of these work products is reviewed by all people who have

participated in requirements elicitation.

USE CASES

It is helpful to create scenarios that identify a thread of usage for the system to be

constructed.

These scenarios are often called use cases.

Use cases tell a story about how an end user interacts with the system under a

specific set of circumstances.

This story may be:

 narrative text

 an outline of tasks or interactions

 a template-based description

 diagrammatic representation

It depicts software from an end-user point of view.

Definition of USECASE:

“A use case captures a contract.. [that] describes the system’s behavior under

various conditions as the system responds to a request from one of its

stakeholders.”

Senior Design – Requirements Specification Review

Developing Usecases

18

Developing Usecases
 Use case is to define the set of “actors‖ that will be involved in the

story.

 Actors are the different people (or devices) that use the system or

product within the context of the function or behaviour that is to be

described. Actors represent the roles that people (or devices) play as

the system operates.

 An actor is anything that communicates with the system or product

and that is external in the system itself.

 Every actor has one or more goals when using the system.

 Actor and end user are not necessarily the same thing.

 A typical user may play a number of different roles when using a

system, whereas an actor represents a class of external entities

(often, but not always, people) that play just one role in the context

of the use case.

 Eg: consider a machine operator (a user) who interacts with the control

computer for a manufacturing cell that contains a number of robots and

numerically controlled machines.

19

Developing Use cases
 After careful review of requirements, the software for the control

computer requires four different modes (roles) for interaction

programming mode, test mode, monitoring mode, and trouble

shooting mode.

 Four actors can be defined: programmer, tester, monitor, and

trouble shooter.

 In some cases, the machine operator can play all these roles.

 In others, different people may play the role of each actor.

 In the first iteration primary actors are identified

 After first iteration secondary actors are identified if necessary.

 “Primary actors” interact to achieve required system function

and derive the intended benefit from the system.

 They work directly and frequently with the software.

 “Secondary actors” support the system so that primary actors can

do their work.

20

21

Use-Cases
 A collection of user scenarios that describe the thread of usage of a system

 Each scenario is described from the point-of-view of an “actor”—a person or
device that interacts with the software in some way

 Each scenario answers the following questions:

 Who is the primary actor, the secondary actor (s)?

 What are the actor’s goals?

 What preconditions should exist before the story begins?

 What main tasks or functions are performed by the actor?

 What extensions might be considered as the story is described?

 What variations in the actor’s interaction are possible?

 What system information will the actor acquire, produce, or change?

 Will the actor have to inform the system about changes in the external
environment?

 What information does the actor desire from the system?

 Does the actor wish to be informed about unexpected changes?

Software Engineering – Requirements Engineering

DEVELOPING USE CASES

Think about a home security system.

22

Software Engineering – Requirements Engineering

DEVELOPING USE CASES

Think about a home security system.

Three actors exist: homeowner/configuration manager, sensors, and the

monitoring subsystem.

Let’s look at the homeowner. The homeowner interacts with the home security

function in a number of different ways using either the alarm control panel or a

PC:

 Enters a password to allow all other interactions.

 Inquires about the status of a security zone.

 Inquiries about the status of a sensor.

 Presses the panic button in an emergency.

 Activates/deactivates the security system.
23

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 24

Use-Case Diagram

homeowner

Arms/ disarms

syst em

Accesses syst em

via Int ernet

Reconf igures sensors

and relat ed

syst em f eat ures

Responds t o

alarm event

Encount ers an

error condit ion

syst em

administ rat or

sensors

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 25

Building the Analysis Model

 Elements of the analysis model

 Scenario-based elements

• Functional—processing narratives for software functions

• Use-case—descriptions of the interaction between an

―actor‖ and the system

 Class-based elements

• Implied by scenarios

 Behavioral elements

• State diagram

 Flow-oriented elements

• Data flow diagram

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 26

Class Diagram

Sensor

name/id

type

location

area

characteris tics

identify()

enable()

disable()

reconfigure ()

From the SafeHome system …

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 27

State Diagram

Reading

Commands

System status = “ready”

Display msg = “enter cmd”

Display status = steady

Entry/subsystems ready

Do: poll user input panel

Do: read user input

Do: interpret user input

State name

State variables

State activities

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014). Slides copyright 2014 by Roger Pressman. 28

Analysis Patterns
Pattern name: A descriptor that captures the essence of the pattern.

Intent: Describes what the pattern accomplishes or represents

Motivation: A scenario that illustrates how the pattern can be used to address the

problem.

Forces and context: A description of external issues (forces) that can affect how

the pattern is used and also the external issues that will be resolved when the

pattern is applied.

Solution: A description of how the pattern is applied to solve the problem with an

emphasis on structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what

trade-offs exist during its application.

Design: Discusses how the analysis pattern can be achieved through the use of

known design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named

pattern because (1) it is commonly used with the named pattern; (2) it is structurally

similar to the named pattern; (3) it is a variation of the named pattern.

Negotiating Requirements

 Identification of system key stakeholders

 Determination of stakeholders’ ―win conditions‖

 Negotiate to reconcile stakeholders’ win conditions into ―win-

win‖ result for all stakeholders (including developers)

The goal of requirement negotiation is to produce a win-win

result before proceeding to subsequent software engineering

activities.

29

30

Scenario-Based Modeling

 Computer-based system or product is measured in many

ways, user satisfaction resides at the top of the list.

 Software team will be better able to properly characterize

requirements and build meaningful analysis and design

models, if how end users (and other actors) want to

interact with a system,

 Hence, requirements modelling with UML begins with the

creation of scenarios in the form of use cases, activity

diagrams, and swimlane diagrams.

31

Scenario-Based Modeling

Alistair Cockburn characterizes a use case as a

“contract for behaviour”. The “contract” defines the way

in which an actor uses a computer-based system to

accomplish some goal.

“[Use-cases] are simply an aid to defining what exists

outside the system (actors) and what should be

performed by the system (use-cases).” Ivar Jacobson

(1) What should we write about?

(2) How much should we write about it?

(3) How detailed should we make our description?

(4) How should we organize the description?

32

What to Write About?
 Inception and elicitation—provide you with the

information you’ll need to begin writing use cases.

 Requirements gathering meetings, QFD, and other
requirements engineering mechanisms are used to

 identify stakeholders

 define the scope of the problem

 specify overall operational goals

 establish priorities

 outline all known functional requirements,
and

 describe the things (objects) that will be
manipulated by the system.

 To begin developing a set of use cases, list the functions
or activities performed by a specific actor.

33

What to Write About?
 The SafeHome home surveillance function (subsystem) identifies the

following functions (an abbreviated list) that are performed by the

homeowner actor:

 Select camera to view.

 Request thumbnails from all cameras.

 Display camera views in a PC window.

 Control pan and zoom for a specific camera.

 Selectively record camera output.

 Replay camera output.

 Access camera surveillance via the Internet.

34

How Much to Write About?

 As further conversations with the stakeholders

progress, the requirements gathering team

develops use cases for each of the functions

noted.

 In general, use cases are written first in an

informal narrative fashion.

 If more formality is required, the same use

case is rewritten using a structured format

similar to the one proposed.

35

How Much to Write About?
 To illustrate, consider the function access camera surveillance

via the Internet— display camera views (ACS-DCV). The

stakeholder who takes on the role of the homeowner actor

might write the following narrative:

 Use case: Access camera surveillance via the Internet—

display camera views
 (ACS-DCV)

 Actor: homeowner

 If I’m at a remote location, I can use any PC with appropriate browser software to log on

to the SafeHome Products website. I enter my user ID and two levels of passwords and

once I’m validated, I have access to all functionality for my installed SafeHome system.

To access a specific camera view, I select “surveillance” from the major function buttons

displayed. I then select “pick a camera” and the floor plan of the house is displayed. I

then select the camera that I’m interested in. Alternatively, I can look at thumbnail

snapshots from all cameras simultaneously by selecting “all cameras” as my viewing

choice. Once I choose a camera, I select “view” and a one-frame-per-second view

appears in a viewing window that is identified by the camera ID. If I want to switch

cameras, I select “pick a camera” and the original viewing window disappears and the

floor plan of the house is displayed again. I then select the camera that I’m interested in.

A new viewing window appears.

36

How Much to Write About?
 A variation of a narrative use case presents the interaction as an ordered

sequence of user actions. Each action is represented as a declarative

sentence. Revisiting the ACS-DCV function, you would write:
 Use case: Access camera surveillance via the Internet—display camera views (ACS-DCV)

 Actor: homeowner

1. The homeowner logs onto the SafeHome Products website.

2. The homeowner enters his or her user ID.

3. The homeowner enters two passwords (each at least eight characters in

length).

4. The system displays all major function buttons.

5. The homeowner selects the “surveillance” from the major function buttons.

6. The homeowner selects “pick a camera.”

7. The system displays the floor plan of the house.

8. The homeowner selects a camera icon from the floor plan.

9. The homeowner selects the “view” button.

10.The system displays a viewing window that is identified by the camera ID.

11.The system displays video output within the viewing window at one frame per

second.
 It is important to note that this sequential presentation does not consider any alternative interactions

(the narrative is more free-flowing and did represent a few alternatives). Use cases of this type are

sometimes referred to as primary scenarios

37

How Much to Write About?
 Refining a Preliminary Use Case:

 A description of alternative interactions is essential for a complete understanding of the

function that is being described by a use case. Therefore, each step in the primary

scenario is evaluated by asking the following questions

 Can the actor take some other action at this point?

 Is it possible that the actor will encounter some error condition at this

point? If so, what might it be?

 Is it possible that the actor will encounter some other behaviour at this

point (e.g.,behaviour that is invoked by some event outside the actor’s

control)? If so, what might it be?

 Answers to these questions result in the creation of a set of secondary

scenarios that are part of the original use case but represent alternative

behaviour. For example, consider steps 6 and 7 in the primary scenario

presented earlier:

6. The homeowner selects “pick a camera.”

7. The system displays the floor plan of the house.

 Can the actor take some other action at this point?
 The answer is “yes.” Referring to the free-flowing narrative, the actor may

choose to view thumbnail snapshots of all cameras simultaneously. Hence,

one secondary scenario might be “View thumbnail snapshots for all cameras.”

38

How Much to Write About?
 Is it possible that the actor will encounter some error condition at this

point?

 Ans: We consider only error conditions that are likely as a direct result of the action

described in step 6 or step 7. Again the answer to the question is “yes.”

A floor plan with camera icons may have never been configured. Hence,

selecting “pick a camera” results in an error condition: “No floor plan configured for

this house.” This error condition becomes a secondary scenario.

 Is it possible that the actor will encounter some other behaviour at this

point?

 Ans: Again the answer to the question is “yes.” As steps 6 and 7 occur, the

system may encounter an alarm condition. This would result in the

system displaying a special alarm notification (type, location, system action)

and providing the actor with a number of options relevant to the nature of the

alarm. Because this secondary scenario can occur at any time for virtually all

interactions, it will not become part of the ACS-DCV use case. Rather, a separate

use case—Alarm condition encountered—would be developed and referenced

from other use cases as required.

39

How Much to Write About?
 Each of the situations described in the preceding paragraphs is

characterized as a use-case exception. An exception describes a situation

(either a failure condition or an alternative chosen by the actor) that causes

the system to exhibit somewhat different behavior.

 The following issues should also be explored:
 Are there cases in which some “validation function” occurs during this use

case?

 This implies that validation function is invoked and a potential error condition might

occur.

 Are there cases in which a supporting function (or actor) will fail to respond

appropriately?

 For example, a user action awaits a response but the function that is to respond

times out.

 Can poor system performance result in unexpected or improper user actions?
 For example, a Web-based interface responds too slowly, resulting in a user making multiple

selects on a processing button. These selects queue inappropriately and ultimately generate an

error condition.

40

Writing a Formal Use Case:

41

Writing a Formal Use Case:

 The ACS-DCV use case shown in the sidebar follows a typical outline for

formal use cases. The goal in context identifies the overall scope of the use

case. The recondition describes what is known to be true before the use

case is initiated.

 The trigger identifies the event or condition that ―gets the use case started‖ .

 The scenario lists the specific actions that are required by the actor and the

appropriate system responses.

 Exceptions identify the situations uncovered as the preliminary use case is

refined

42

Use-Case Diagram

homeowner

Access camera

surveillance via the

Internet

Conf igure SafeHome

system parameters

Set alarm

cameras

SafeHome

