
Unit-1 Micro Syllabus

 Introduction to Software Engineering:

 Software- Define Software

 Software Engineering- Fundamentals to Software Engineering and the

importance of Software Engineering.

 The nature of software.

 The changing nature of software

 Software Process: Software engineering-A layered technology.

 A process framework-

 1. Defining a framework Activity 2. Identifying the Task set 3. Process

Patterns 1

 Software engineering practice

 Software development myths-

 Management myths , Customer Myths, Practitioner‟s

myths

Process models:

 Prescriptive Process Models

 Waterfall model, Incremental process model,

Prototyping and spiral models

 Unified Process Model.

 Agile process model: SCRUM

2

3

The Nature of Software

Software takes on a dual role.

 It is a product,

 The vehicle for delivering a product.

As a product,

 it delivers the computing potential embodied by computer

hardware, by a network of computers that are accessible by

local hardware.
 Whether it resides within a mobile phone or operates inside a mainframe

computer,

 software is an information transformer—producing, managing,

acquiring, modifying, displaying, or transmitting information that

can be as simple as a single bit or as complex as a multimedia

presentation derived from data acquired from dozens of independent

sources.

4

Contd…

Software delivers the most important product of our time—

information.

 It transforms personal data (e.g., an individual’s financial

transactions) so that the data can be more useful in a local

context;

 it manages business information to enhance

competitiveness;

 it provides a gateway to worldwide information networks

(e.g., the Internet),

 and provides the means for acquiring information in all of

its forms.

5

Contd…

The role of computer software has undergone significant

change over the last half-century.

 Dramatic improvements in hardware performance,

 profound changes in computing architectures,

 vast increases in memory and storage capacity,

 and a wide variety of exotic input and output options, have all

precipitated more sophisticated and complex computer-based

systems.

6

Contd…

The questions that were asked of the lone programmer are the

same questions that are asked when modern computer-based

systems are built:

• Why does it take so long to get software finished?

• Why are development costs so high?

• Why can’t we find all errors before we give the software to our

 customers?

• Why do we spend so much time and effort maintaining existing

 programs?

• Why do we continue to have difficulty in measuring progress as

 software is being developed and maintained?

7

Definition of Software

Software is:

(1) instructions (computer programs) that when

executed provide desired features, function, and

performance;

(2) data structures that enable the programs to

adequately manipulate information and

(3) documentation that describes the operation and

use of the programs.

8

Characteristics of Software:

 Software is a logical rather than a physical

system element. Therefore, software has

characteristics that are considerably different

than those of hardware:

1. Software is developed or engineered, it is

not manufactured in the classical sense.

2. Software doesn't "wear out."

3. Although the industry is moving toward

component-based construction, most

software continues to be custom-built.

9

Characteristics of Software
 Software is developed or engineered, it is not

manufactured in the classical sense.

 Software development and hardware manufacturing, the two

activities are fundamentally different.

 In both activities, high quality is achieved through good design,

but the manufacturing phase for hardware can introduce

quality problems that are non-existent(or easily corrected) for

software.

 Both activities are dependent on people, but the relationship

between people applied and work accomplished is entirely

different.

 Both activities require the construction of a “product,” but the

approaches are different.

10

Characteristics of Software?
 Software doesn't "wear out."

 Figure 1.1 depicts failure rate as a function of time for

hardware.

 The relationship, often called the “bathtub curve,” indicates that

hardware exhibits relatively high failure rates early in its life

(these failures are often attributable to design or manufacturing

defects);

 defects are corrected and the failure rate drops to a steady-

state level (hopefully, quite low) for some period of time.

 As time passes, however, the failure rate rises again as

hardware components suffer from the cumulative effects of

dust, vibration, abuse, temperature extremes, and many other

environmental maladies.

 Failure curve for hardware

11

12

Failure curves for software

13

Characteristics of Software

 Software is not susceptible to the environmental maladies that

cause hardware to wear out.

 The failure rate curve for software should take the form of the

“idealized curve” shown in Figure 1.2.

 Undiscovered defects will cause high failure rates early in the

life of a program.

 These are corrected and the curve flattens as shown. The

idealized curve is a gross oversimplification of actual failure

models for software. However, the implication is clear—

software doesn‟t wear out. But it does deteriorate!

14

Characteristics of Software
 This seeming contradiction can best be explained by

considering the actual curve in Figure 1.2.

 During its life software will undergo change. As changes are

made, it is likely that errors will be introduced, causing the

failure rate curve to spike as shown in the “actual curve” (Figure

1.2).

 Before the curve can return to the original steady-state failure

rate, another change is requested, causing the curve to spike

again.

 Slowly, the minimum failure rate level begins to rise—the

software is deteriorating due to change.

15

Characteristics of Software
 Another aspect of wear illustrates the difference between

hardware and software.

 When a hardware component wears out, it is replaced by a

spare part.

 There are no software spare parts. Every software failure

indicates an error in design or in the process through which

design was translated into machine executable code.

 Therefore, the software maintenance tasks that accommodate

requests for change involve considerably more complexity than

hardware maintenance.

16

Characteristics of Software
 Although the industry is moving toward component-based

construction, most software continues to be custom-built.

 As an engineering discipline evolves, a collection of standard

design components is created.

 Standard screws and off-the-shelf integrated circuits are only

two of thousands of standard components that are used by

mechanical and electrical engineers as they design new

systems.

 The reusable components have been created so that the

engineer can concentrate on the truly innovative elements of a

design, that is, the parts of the design that represent something

new.

 In the hardware world, component reuse is a natural part of the

engineering process.

17

Characteristics of Software

 A software component should be designed and implemented so

that it can be reused in many different programs. Modern

reusable components encapsulate both data and the

processing that is applied to the data, enabling the software

engineer to create new applications from reusable parts.

 For example, today‟s interactive user interfaces are built with

reusable components that enable the creation of graphics

windows, pull-down menus, and a wide variety of interaction

mechanisms.

 The data structures and processing detail required to build the

interface are contained within a library of reusable components

for interface construction.

18

Software Application Domains

 system software

 application software

 engineering/scientific
software

 embedded software

 product-line software

 WebApps (Web
applications)

 AI software

19

 system software

 a collection of programs written to service other programs.

 Some system software processes complex, but determinate,

information structures.

 e.g., compilers, editors, and file management utilities

 Other systems applications process largely indeterminate data.

 e.g., operating system components, drivers, networking

 software, telecommunications processors

20

 Application software—stand-alone programs that solve a

specific business need.

 Applications in this area process business or technical data in a

way that facilitates business operations or management/technical

decision making.

 Application software is used to control business functions in real

time

e.g., point-of-sale transaction processing, real-time

manufacturing process control.

21

 Engineering/scientific software—has been characterized

by “number crunching” algorithms.

 Applications range from astronomy to volcanology,

 from automotive stress analysis to space shuttle orbital

dynamics,

 and from molecular biology to automated manufacturing.

 Computer-aided design, system simulation, and other

interactive applications have begun to take on real-time and

even system software characteristics.

22

 Embedded software—resides within a product or system

and is used to implement and control features and functions

for the end user and for the system itself.

 Embedded software can perform limited and esoteric

functions

 (e.g., key pad control for a microwave oven)

 provide significant function and control capability

 (e.g., digital functions in an automobile such as fuel control,

dashboard displays, and braking systems).

23

 Product-line software—designed to provide a specific

capability for use by many different customers.

 Product-line software can focus on a limited and esoteric

marketplace

 e.g., inventory control products

 Address mass consumer markets

 e.g., word processing, spread sheets, computer graphics,

multimedia, entertainment, database management, and personal

and business financial applications.

24

 Web applications—called “WebApps,” this network-centric

software category spans a wide array of applications.

 In their simplest form, WebApps can be little more than a set of

linked hypertext files that present information using text and

limited graphics.

 As Web 2.0 emerges, Web-Apps are evolving into sophisticated

computing environments that not only provide stand-alone

features, computing functions, and content to the end user, but

also are integrated with corporate databases and business

applications.

25

 Artificial intelligence software—makes use of non -

numerical algorithms to solve complex problems that are not

amenable to computation or straightforward analysis.

 Eg: Applications within this area include

 robotics,

 expert systems,

 pattern recognition (image and voice),

 artificial neural networks,

 theorem proving,

 and game playing.

26

Legacy Software

 software must be adapted to meet the needs
of new computing environments or
technology.

 software must be enhanced to implement new
business requirements.

 software must be extended to make it
interoperable with other more modern
systems or databases.

 software must be re-architected to make it
viable within a network environment.

Why must it change?

27

Nature of WebApps - I

 Network intensiveness. A WebApp resides on a network and
must serve the needs of a diverse community of clients.

 Concurrency. A large number of users may access the
WebApp at one time.

 Unpredictable load. The number of users of the WebApp may
vary by orders of magnitude from day to day.

 Performance. If a WebApp user must wait too long (for
access, for server-side processing, for client-side formatting
and display), he or she may decide to go elsewhere.

 Availability. Although expectation of 100 percent availability is
unreasonable, users of popular WebApps often demand
access on a “24/7/365” basis.

28

Nature of WebApps - II

 Data driven. The primary function of many WebApps is to use
hypermedia to present text, graphics, audio, and video content to
the end-user.

 Content sensitive. The quality and aesthetic nature of content
remains an important determinant of the quality of a WebApp.

 Continuous evolution. Unlike conventional application software
that evolves over a series of planned, chronologically-spaced
releases, Web applications evolve continuously.

 Immediacy. Although immediacy—the compelling need to get
software to market quickly—is a characteristic of many application
domains, WebApps often exhibit a time to market that can be a
matter of a few days or weeks.

 Security. Because WebApps are available via network access, it
is difficult, if not impossible, to limit the population of end-users
who may access the application.

 Aesthetics. An undeniable part of the appeal of a WebApp is its
look and feel.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 29

The Changing Nature of Software

1. WebApps

 Modern WebApps are much more than hypertext files with a
few pictures

 WebApps are augmented with tools like XML and Java to allow
Web engineers including interactive computing capability

 WebApps may standalone capability to end users or may be
integrated with corporate databases and business applications

 Semantic web technologies (Web 3.0) have evolved into
sophisticated corporate and consumer applications that
encompass semantic databases that require web linking,
flexible data representation, and application programmer
interfaces (API’s) for access

 The aesthetic nature of the content remains an important
determinant of the quality of a WebApp.

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 30

2. Mobile Apps

 Reside on mobile platforms such as cell phones or tablets

 Contain user interfaces that take both device characteristics and

location attributes

 Often provide access to a combination of web-based resources

and local device processing and storage capabilities

 Provide persistent storage capabilities within the platform

 A mobile web application allows a mobile device to access to

web-based content using a browser designed to accommodate

the strengths and weaknesses of the mobile platform

 A mobile app can gain direct access to the hardware found on the

device to provide local processing and storage capabilities

 As time passes these differences will become blurred

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 31

3. Cloud Computing

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 32

3. Cloud Computing

 Cloud computing provides distributed data storage and processing

resources to networked computing devices

 Computing resources reside outside the cloud and have access to

a variety of resources inside the cloud

 Cloud computing requires developing an architecture containing

both frontend and backend services

 Frontend services include the client devices and application

software to allow access

 Backend services include servers, data storage, and server-

resident applications

 Cloud architectures can be segmented to restrict access to private

data

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman. 33

4. Product Line Software

 Product line software is a set of software-intensive systems that

share a common set of features and satisfy the needs of a

particular market

 These software products are developed using the same

application and data architectures using a common core of

reusable software components

 A software product line shares a set of assets that include
requirements, architecture, design patterns, reusable
components, test cases, and other work products

 A software product line allow in the development of many
products that are engineered by capitalizing on the commonality
among all products with in the product lin

34

Software Engineering

 Some realities:

 a concerted effort should be made to understand the

problem before a software solution is developed

 design becomes a pivotal activity

 software should exhibit high quality

 software should be maintainable

 The seminal definition:

 [Software engineering is] the establishment and use

of sound engineering principles in order to obtain

economically software that is reliable and works

efficiently on real machines.

35

Software Engineering

 The IEEE definition:
 Software Engineering: (1) The application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of

software; that is, the application of engineering to

software. (2) The study of approaches as in (1).

36

A Layered Technology

Software Engineering

a “quality” focus

process model

methods

tools

37

A Layered Technology

 Software engineering is a layered technology.

 Referring to Figure (previous slide), software engineering

must rest on an organizational commitment to quality.

 Total quality management, Six Sigma, and similar

philosophies foster a continuous process improvement

culture, leads to the development of increasingly more

effective approaches to software engineering.

 The bedrock that supports software engineering is a

quality focus.

38

A Layered Technology
 The foundation for software engineering is the process layer.

 The software engineering process is the glue that holds the

technology layers together and enables timely development

of computer software.

 Process defines a framework that must be established for

effective delivery of software engineering technology.

 The software process forms the basis for management control

of software projects and establishes the context in which

 technical methods are applied,

 work products (models, documents, data, reports,

 forms, etc.) are produced, milestones are established,

quality is ensured, change is properly managed

39

A Layered Technology
 Software engineering methods provide the technical how-to‟s

for building software.

 Methods encompass a broad array of tasks that include

 communication,

 requirements analysis,

 design modelling,

 program construction,

 testing, and support.

 Software engineering methods rely on a set of basic principles

that govern each area of the technology and include modelling

activities and other descriptive techniques.

40

A Layered Technology

 Software engineering tools provide automated or semi-

automated support for the process and the methods.

 When tools are integrated so that information created by one

tool can be used by another, a system for the support of

software development, called computer-aided software

engineering, is established.

41

Generic process Framework

Activities

 Communication

 Planning

 Modeling
 Analysis of requirements

 Design

 Construction
 Code generation

 Testing

 Deployment

42

Umbrella Activities
 Software project management

 Formal technical reviews

 Software quality assurance

 Software configuration management

 Work product preparation and production

 Reusability management

 Measurement

 Risk management

43

The software process

44

A Process Framework
A process is a collection of activities, actions, and tasks that are performed

when some work product is to be created.

 An activity strives to achieve a broad objective and is applied regardless of the

application domain, size of the project, complexity of the effort, or degree of

rigor with which software engineering is to be applied.

e.g., communication with stakeholders

An action encompasses a set of tasks that produce a major work product.

e.g., for action: architectural design

e.g., for work product: an architectural design model

A task focuses on a small, but well-defined objective that produces a tangible

outcome.

e.g., conducting a unit test

45

A Process Framework

Software engineering, is an adaptable approach that enables the people

doing the work (the software team) to pick and choose the appropriate set

of work actions and tasks.

The intent is always to deliver software in a timely manner and with

sufficient quality to satisfy those who have sponsored its creation and those

who will use it.

 Communication. Before any technical work can commence, customer

communicate and collaborate with other stakeholders.

The intent is to understand stakeholders’ objectives for the project and to

gather requirements that help define software features and functions.

46

A Process Framework
 Planning. The planning activity creates a “map” that helps guide the team

as it makes the journey.

The map—called a software project plan—defines the software engineering

work by describing the technical tasks to be conducted, the risks that are

likely, the resources that will be required, the work products to be produced,

and a work schedule.

 Modelling. It creates a “sketch” of the thing—what it will look like

architecturally, how the constituent parts fit together, and many other

characteristics.

If required, refine the sketch into greater and greater detail in an effort to better

understand the problem and how to solve it.

A software engineer does the same thing by creating models to better

understand software requirements and the design that will achieve those

requirements.

47

A Process Framework
 Construction. This activity combines code generation (either manual or

automated) and the testing that is required to uncover errors in the

code.

 Deployment. The software (as a complete entity or as a partially

completed increment) is delivered to the customer who evaluates the

delivered product and provides feedback based on the evaluation.

These five generic framework activities can be used during the development

of small, simple programs, the creation of large Web applications, and for

the engineering of large, complex computer-based systems.

The details of the software process will be quite different in each case, but

the framework activities remain the same.

That is, communication, planning, modelling, construction, and

deployment are applied repeatedly through a number of project iterations.

48

A Process Framework
Software engineering process framework activities are complemented by a

number of umbrella activities.

Umbrella activities are applied throughout a software project and help a

software team manage and control progress, quality, change, and risk.

Typical umbrella activities include:

Software project tracking and control—allows the software team to

assess progress against the project plan and take any necessary action

to maintain the schedule.

Risk management—assesses risks that may affect the outcome of the

project or the quality of the product.

Software quality assurance— defines and conducts the activities

required to ensure software quality.

Technical reviews—assesses software engineering work products in an

effort to uncover and remove errors before they are propagated to the next

activity.

49

A Process Framework
Measurement—defines and collects process, project, and product

measures that assist the team in delivering software that meets stakeholders’

needs; can be used in conjunction with all other framework and umbrella

activities.

Software configuration management—manages the effects of change

throughout the software process.

Reusability management—defines criteria for work product reuse (including

software components) and establishes mechanisms to achieve reusable

components.

Work product preparation and production—encompasses the activities

required to create work products such as models, documents, logs, forms,

and lists.

50

Process Adaptation
It should be agile and adaptable (to the problem, to the project, to the team,

and to the organizational culture).

Therefore, a process adopted for one project might be significantly different

than a process adopted for another project.

Among the differences are

 the overall flow of activities, actions, and tasks and the interdependencies

among them

 the degree to which actions and tasks are defined within each framework

activity

 the degree to which work products are identified and required

 the manner which quality assurance activities are applied

 the manner in which project tracking and control activities are applied

 the overall degree of detail and rigor with which the process is described

 the degree to which the customer and other stakeholders are involved with the

project

 the level of autonomy given to the software team

 the degree to which team organization and roles are prescribed

51

Software Engineering practice

 The generic software process model

composed of a set of activities that establish a

framework for software engineering practice.

 Generic framework activities—

communication, planning, modelling,

construction, and deployment—and umbrella

activities establish a skeleton architecture for

software engineering work.

 But how does the practice of software

engineering fit in?

 the generic concepts and principles that apply

to framework activities.

52

The Essence of Practice

 Polya suggests:

1. Understand the problem (communication and analysis).

2. Plan a solution (modeling and software design).

3. Carry out the plan (code generation).

4. Examine the result for accuracy (testing and quality

assurance).

53

Understand the Problem
 Who has a stake in the solution to the problem?

That is, who are the stakeholders?

 What are the unknowns? What data, functions,
and features are required to properly solve the
problem?

 Can the problem be compartmentalized? Is it
possible to represent smaller problems that
may be easier to understand?

54

Plan the Solution

 Have you seen similar problems before? Are there patterns

that are recognizable in a potential solution? Is there

existing software that implements the data, functions,

and features that are required?

 Has a similar problem been solved? If so, are elements of

the solution reusable?

 Can subproblems be defined? If so, are solutions readily

apparent for the subproblems?

 Can you represent a solution in a manner that leads to

effective implementation? Can a design model be

created?

55

Carry Out the Plan

 Does the solution conform to the plan? Is

source code traceable to the design model?

 Is each component part of the solution provably

correct? Has the design and code been

reviewed, or better, have correctness proofs

been applied to algorithm?

56

Examine the Result

 Is it possible to test each component part of the

solution? Has a reasonable testing strategy

been implemented?

 Does the solution produce results that conform

to the data, functions, and features that are

required? Has the software been validated

against all stakeholder requirements?

57

Hooker‟s General Principles

 1: The Reason It All Exists

 2: KISS (Keep It Simple, Stupid!)

 3: Maintain the Vision

 4: What You Produce, Others Will Consume

 5: Be Open to the Future

 6: Plan Ahead for Reuse

 7: Think!

58

Hooker‟s General Principles
 1: The Reason It All Exists

 A software system exists for one reason: to provide value to

its users.

 Ask questions such as: “Does this add real value to the

system?” If the answer is “no,” don‟t do it. All other principles

support this one.

 All decisions should be made with this in mind.

 Before specifying a system requirement,

 before noting a piece of system functionality,

 before determining the hardware platforms or development

processes,

59

Hooker‟s General Principles
 2: KISS (Keep It Simple, Stupid!)

 Software design is not a haphazard process. There are many

factors to consider in any design effort. All design should be

as simple as possible, but no simpler.

 This facilitates having a more easily understood and easily

maintained system. Features, or internal features, should

not be discarded in the name of simplicity.

 Indeed, the more elegant designs are usually the more simple

ones. Simple also does not mean “quick and dirty.”

 It takes a lot of thought and work over multiple iterations to

simplify. The payoff is software that is more maintainable

and less error-prone.

60

Hooker‟s General Principles
 3: Maintain the Vision

 A clear vision is essential to the success of a software project.

Without one, a project almost unfailingly ends up being “of two

[or more] minds” about itself.

 Without conceptual integrity, a system threatens to become a

patchwork of incompatible designs.

 Compromising the architectural vision of a software

system weakens and will eventually break even the well-

designed systems.

 Having an empowered architect who can hold the vision

and enforce compliance helps ensure a very successful

software project.

61

Hooker‟s General Principles
 4: What You Produce, Others Will Consume

 Always specify, design, and implement knowing someone

else will have to understand what you are doing. The

audience for any product of software development is

potentially large.

 Specify with an eye to the users.

 Design, keeping the implementers in mind.

 Code with concern for those that must maintain and extend

the system.

 Someone may have to debug the code you write, and that

makes them a user of your code. Making their job easier

adds value to the system.

62

Hooker‟s General Principles

 5: Be Open to the Future

 A system with a long lifetime has more value.

 In today‟s computing environments, where specifications

change on a moment‟s notice and hardware platforms are

obsolete just a few months old, software lifetimes are

typically measured in months instead of years. However,

true “industrial-strength” software systems must endure far

longer.

 To do this successfully, these systems must be ready to adapt

to these and other changes. Systems that do this successfully

are those that have been designed this way from the start.

 Never design yourself into a corner. Always ask “what if,”

and prepare for all possible answers by creating systems

that solve the general problem, not just the specific one..

631

Hooker‟s General Principles
 6: Plan Ahead for Reuse

 Reuse saves time and effort.

 Achieving a high level of reuse is arguably the hardest goal to

accomplish in developing a software system.

 The reuse of code and designs has been proclaimed as a major

benefit of using object-oriented technologies.

 The return on this investment is not automatic. To leverage the

reuse possibilities that object-oriented [or conventional]

programming provides requires forethought and planning.

 There are many techniques to realize reuse at every level of the

system development process. . . . Planning ahead for reuse

reduces the cost and increases the value of both the

reusable components and the systems into which they are

incorporated.

64

Hooker‟s General Principles
 7: Think!

 Placing clear, complete thought before action almost always

produces better results.

 When you think about something, you are more likely to do it

right.

 You also gain knowledge about how to do it right again. If

you do think about something and still do it wrong, it

becomes a valuable experience.

 A side effect of thinking is learning to recognize when you

don‟t know something, at which point you can research the

answer. When clear thought has gone into a system, value

comes out.

 If every software engineer and every software team simply followed

Hooker’s seven principles, many of the difficulties we experience in

building complex computer based systems would be eliminated.

65

Software Myths

 Affect managers, customers (and

other non-technical stakeholders)

and practitioners

 Are believable because they often

have elements of truth,

but …

 Invariably lead to bad decisions,

therefore …

 Insist on reality as you navigate your

way through software engineering

Software Myths

Definition: Erroneous beliefs about software and the process used to build
it. Myths have number of attributes that have made them insidious (i.e.
dangerous).

 Misleading Attitudes - caused serious problem for managers and technical
people.

Management myths
Managers in most disciplines, are often under pressure to maintain budgets,
keep schedules on time, and improve quality.

Myth1: We already have a book that's full of standards and procedures for
building software, won't that provide my people with everything they need to
know?

Reality :

 Are software practitioners aware of existence standards?

 Does it reflect modern software engineering practice?

 Is it complete? Is it streamlined to improve time to delivery while still
maintaining a focus on quality?

66

Myth2: If we get behind schedule, we can add more programmers
and catch up

Reality: Software development is not a mechanistic process like
manufacturing. Adding people to a late software project makes
it later.

 People can be added but only in a planned and well-
coordinated manner

Myth3: If I decide to outsource the software project to a third
party, I can just relax and let that firm build it.

Reality: If an organization does not understand how to manage
and control software projects internally, it will invariably
struggle when it outsource software projects

67

Customer Myths
Customer may be a person from inside or outside the company that has

requested software under contract.

Myth: A general statement of objectives is sufficient to begin writing

programs— we can fill in the details later.

Reality: A poor up-front definition is the major cause of failed software

efforts. A formal and detailed description of the information domain, function,

behavior, performance, interfaces, design constraints, and validation criteria

is essential. These characteristics can be determined only after thorough

communication between customer and developer.

Myth: Project requirements continually change, but change can be easily

accommodated because software is flexible.

Reality: Customer can review requirements and recommend modifications

with relatively little impact on cost. When changes are requested during

software design, the cost impact grows rapidly. Below mentioned figure for

reference.

68

69

Practitioner's myths

Myth1: Once we write the program and get it to work, our job is done.

Reality: Someone once said that "the sooner you begin 'writing code',
the longer it'll take you to get done." Industry data indicate that between
60 and 80 percent of all effort expended on software will be expended
after it is delivered to the customer for the first time.

Myth2: Until I get the program "running" I have no way of assessing its
quality.

Reality: One of the most effective software quality assurance
mechanisms can be applied from the inception of a project—the formal
technical review.

Software reviews are a “quality filter” that have been found to be more
effective than testing for finding certain classes of software defects.

Myth3: The only deliverable work product for a successful project is the
working program.

70

Reality: A working program is only one part of a software
configuration that includes many elements.

 Models, documentation, plans provides a foundation
for successful engineering and, guidance for software
support.

Myth4 : Software engineering will make us create
voluminous and unnecessary documentation and will
invariably slow us down.

Reality: Software engineering is not about creating
documents. It is about creating quality. Better quality
leads to reduced rework. And reduced rework results in
faster delivery times.

71

72

 A Generic Process Model

73

 A Generic Process Model

 The software process is represented schematically

in Figure 2.1.

 In each framework activity is populated by a set of

software engineering actions.

 Each software engineering action is defined by a

task set that identifies

 the work tasks that are to be completed,

 the work products that will be produced,

 the quality assurance points that will be

required,

 and the milestones that will be used to indicate

progress.

74

 A Generic Process Model
A generic process framework for software engineering

defines five framework activities—communication, planning,

modeling, construction, and deployment.

A set of umbrella activities—project tracking and control,

risk management, quality assurance, configuration

management, technical reviews, and others—are applied

throughout the process.

process flow—describes how the framework activities and

the actions and tasks that occur within each framework

activity are organized with respect to sequence and time

75

Process Flow

76

 A Generic Process Model
 A linear process flow executes each of the five framework

activities in sequence, beginning with communication and

culminating with deployment (Figure 2.2a).

 An iterative process flow repeats one or more of the

activities before proceeding to the next (Figure 2.2b).

 An evolutionary process flow executes the activities in a

“circular” manner. Each circuit through the five activities leads

to a more complete version of the software (Figure 2.2c).

 A parallel process flow (Figure 2.2d) executes one or more

activities in parallel with other activities (e.g., modelling for one

aspect of the software might be executed in parallel with

construction of another aspect of the software).

77

 A Generic Process Model
A software team would need significantly more information before

it could properly execute any one of these activities as part of the

software process.

A key question:

What actions are appropriate for a framework activity,

given the nature of the problem to be solved,

the characteristics of the people doing the work,

and the stakeholders who are sponsoring the project?

78

Identifying a Task Set

 For a small software project requested by one person (at

a remote location) with simple, straightforward

requirements, the communication activity might

encompass little more than a phone call with the

appropriate stakeholder. Therefore, the only necessary

action is phone conversation, and the work tasks (the

task set) that this action encompasses are:

 1. Make contact with stakeholder via telephone.

 2. Discuss requirements and take notes.

 3. Organize notes into a brief written statement of

requirements.

 4. E-mail to stakeholder for review and approval.

79

Identifying a Task Set

 A task set defines the actual work to be done to

accomplish the objectives of a software

engineering action.

 A list of the task to be accomplished

 A list of the work products to be produced

 A list of the quality assurance filters to be applied

 Referring again to Figure 2.1, each software engineering

action (e.g., elicitation, an action associated with the

communication activity) can be represented by a number of

different task sets—each a collection of software

engineering work tasks, related work products, quality

assurance points, and project milestones.

80

Process Patterns

 A process pattern
 describes a process-related problem that is

encountered during software engineering work,

 identifies the environment in which the problem has
been encountered, and

 suggests one or more proven solutions to the
problem.

 Stated in more general terms, a process
pattern provides you with a template—a
consistent method for describing problem
solutions within the context of the software
process.

81

Process Patterns

 Pattern Name. The pattern is given a

meaningful name describing it within the

context of the software process

 (e.g., TechnicalReviews).

 Forces. The environment in which the pattern

is encountered and the issues that make the

problem visible and may affect its solution.

82

Process Pattern Types

 Type. The pattern type is specified. Ambler

suggests three types:

 Stage patterns—defines a problem associated

with a framework activity for the process.

 Task patterns—defines a problem associated

with a software engineering action or work

task and relevant to successful software

engineering practice

 Phase patterns—define the sequence of

framework activities that occur with the process,

even when the overall flow of activities is iterative

in nature.

83

Process Pattern Types
 Initial context. Describes the conditions under which the pattern

applies. Prior to the initiation of the pattern:

o (1) What organizational or team-related activities have already

occurred?

o (2) What is the entry state for the process?

o (3) What software engineering information or project information

already exists?

 For example, the Planning pattern (a stage pattern) requires that

 (1) Customers and software engineers have established a collaborative

communication;

 (2) Successful completion of a number of task patterns [specified] for the

Communication pattern has occurred; and

 (3) The project scope, basic business requirements, and project constraints

are known.

84

Process Pattern Types
 Problem. The specific problem to be solved by the

pattern.

 Solution. Describes how to implement the pattern

successfully.

 This describes how the initial state of the process (that

exists before the pattern is implemented) is modified as a

consequence of the initiation of the pattern.

 It also describes how software engineering information or

project information that is available before the initiation

of the pattern is transformed as a consequence of the

successful execution of the pattern.

85

Process Pattern Types
 Resulting Context. Describes the conditions that will

result once the pattern has been successfully

implemented. Upon completion of the pattern:

 (1) What organizational or team-related activities must have

occurred?

 (2) What is the exit state for the process?

 (3) What software engineering information or project

information has been developed?

 Related Patterns. Provide a list of all process patterns that

are directly related to this one. This may be represented

as a hierarchy or in some other diagrammatic form.

 For example, the stage pattern Communication

encompasses the task patterns: Project Team, Collaborative

Guidelines, Scope Isolation, Requirements Gathering,

Constraint Description, and Scenario Creation.

86

Process Pattern Types
 Known Uses and Examples. Indicate the specific

instances in which the pattern is applicable. For example,

Communication is mandatory at the beginning of every

software project, is recommended throughout the software

project, and is mandatory once the deployment activity is

under way.

87

Process Assessment and Improvement
 Standard CMMI Assessment Method for Process Improvement

(SCAMPI) — provides a five step process assessment model that
incorporates five phases: initiating, diagnosing, establishing, acting and
learning.

 CMM-Based Appraisal for Internal Process Improvement (CBA
IPI)—provides a diagnostic technique for assessing the relative
maturity of a software organization; uses the SEI CMM as the basis
for the assessment [Dun01]

 SPICE—The SPICE (ISO/IEC15504) standard defines a set of
requirements for software process assessment. The intent of the
standard is to assist organizations in developing an objective
evaluation of the efficacy of any defined software process. [ISO08]

 ISO 9001:2000 for Software—a generic standard that applies to any
organization that wants to improve the overall quality of the
products, systems, or services that it provides. Therefore, the
standard is directly applicable to software organizations and
companies. [Ant06]

88

Prescriptive Models

 Prescriptive process models advocate an orderly

approach to software engineering

That leads to a few questions …

 If prescriptive process models strive for structure and

order, are they inappropriate for a software world that

thrives on change?

 Yet, if we reject traditional process models (and the

order they imply) and replace them with something less

structured, do we make it impossible to achieve

coordination and coherence in software work?

89

Prescriptive Models

 There are times when the requirements for a problem

are well understood—when work flows from

communication through deployment in a reasonably

linear fashion.

 This situation is sometimes encountered when well-

defined adaptations or enhancements to an existing

system must be made

 (e.g., an adaptation to accounting software that has been

mandated because of changes to government regulations).

 It may also occur in a limited number of new

development efforts, but only when requirements are

well defined and reasonably stable.

90

Prescriptive Models
 The waterfall model, sometimes called the classic life cycle,

suggests a systematic, sequential approach to software

development that begins with customer specification of

requirements and progresses through planning, modelling,

construction, and deployment, culminating in on going support

of the completed software (Figure A).

 A variation in the representation of the waterfall model is

called the V-model. Represented in Figure B, the V-model

depicts the relationship of quality assurance actions to the

actions associated with communication, modelling, and

early construction activities.

 As a software team moves down the left side of the V, basic

problem requirements are refined into progressively more

detailed and technical representations of the problem and its

solution.

91

The Waterfall Model

Communicat ion

Planning

Modeling

Const ruct ion
Deployment

analysis

design
code

t est

project init iat ion

requirement gat hering estimating

scheduling

tr acking

delivery

support

f eedback

Fig A

92

The V-Model

Fig B

93

Prescriptive Models The Waterfall Model

 Once code has been generated, the team moves up the

right side of the V, essentially performing a series of

tests (quality assurance actions) that validate each of

the models created as the team moved down the left

side.

 There is no fundamental difference between the classic life

cycle and the V-model.

 The V-model provides a way of visualizing how

verification and validation actions are applied to earlier

engineering work.

 The waterfall model is the oldest paradigm for software

engineering.

 Over the past three decades, criticism of this process model

has caused even ardent supporters to question its efficacy.

94

Prescriptive Models The Waterfall Model

 Disadvantages of Waterfall Model

 1. Real projects rarely follow the sequential flow that the

model proposes. Although the linear model can

accommodate iteration, it does so indirectly. As a

result, changes can cause confusion as the project

team proceeds.

 2. It is often difficult for the customer to state all

requirements explicitly. The waterfall model requires this

and has difficulty accommodating the natural uncertainty

that exists at the beginning of many projects.

 3. The customer must have patience. A working version

of the program(s) will not be available until late in the

project time span. A major blunder, if undetected until the

working program is reviewed, can be disastrous.

95

Prescriptive Models The Waterfall Model
 Bradac found that the linear nature of the classic life cycle leads

to “blocking states” in which some project team members must

wait for other members of the team to complete dependent

tasks.

 The time spent waiting can exceed the time spent on productive

work!

 The blocking states tend to be more prevalent at the beginning

and end of a linear sequential process.

 Today, software work is fast-paced and subject to a never-

ending stream of changes (to features, functions, and

information content).

 The waterfall model is often inappropriate for such work.

 It can serve as a useful process model in situations where

requirements are fixed and work is to proceed to completion in a

linear manner.

96

The Incremental Model
 There are many situations in which initial software requirements

are reasonably well defined, but the overall scope of the

development effort precludes a purely linear process.

 There may be a compelling need to provide a limited set of

software functionality to users quickly and then refine and

expand on that functionality in later software releases.

 In such cases, you can choose a process model that is designed

to produce the software in increments.

 The incremental model combines elements of linear and

parallel process flows.

 Referring to Figure 2.5, the incremental model applies linear

sequences in a staggered fashion as calendar time progresses.

 Each linear sequence produces deliverable “increments” of

the software in a manner that is similar to the increments

produced by an evolutionary process flow

97

The Incremental Model
 For example, word-processing software developed using the

incremental paradigm might deliver

 basic file management, editing, and document production functions in

the first increment;

 more sophisticated editing and document production capabilities in

the second increment;

 spelling and grammar checking in the third increment;

 and advanced page layout capability in the fourth increment. It should

be noted that the process flow for any increment can incorporate the

prototyping paradigm.

 When an incremental model is used, the first increment is often

a core product.

 That is, basic requirements are addressed but many

supplementary features (some known, others unknown) remain

undelivered.

98

The Incremental Model
 The core product is used by the customer (or undergoes

detailed evaluation).

 As a result of use and/or evaluation, a plan is developed for

the next increment.

 The plan addresses the modification of the core product to

better meet the needs of the customer and the delivery of

additional features and functionality.

 This process is repeated following the delivery of each

increment, until the complete product is produced.

99

The Incremental Model

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

increment # 1

increment # 2

delivery of

1st increment

delivery of

2nd increment

delivery of

nt h increment

increment # n

project calendar t ime

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign c ode

t es t

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g

C o n s t r u c t i o n

D e p l o y m e n t

 d e l i v e r y

 f e e d b a c k

analy s is

des ign
c ode

t es t

100

The Incremental Model
 The incremental process model focuses on the delivery of an

operational product with each increment.

 Early increments are stripped-down versions of the final

product, but they do provide capability that serves the user

and also provide a platform for evaluation by the user.

 Incremental development is particularly useful when staffing

is unavailable for a complete implementation by the

business deadline that has been established for the project.

 Early increments can be implemented with fewer people. If the

core product is well received, then additional staff (if required)

can be added to implement the next increment.

 Increments can be planned to manage technical risks.

 For example, a major system might require the availability of new

hardware that is under development and whose delivery date is

uncertain.

 It might be possible to plan early increments in a way that avoids the

use of this hardware, thereby enabling partial functionality to be

delivered to end users without inordinate delay.

101

Evolutionary Models: Prototyping
 Evolutionary models are iterative. They are characterized in a

manner that enables you to develop increasingly more complete

versions of the software.

 Prototyping. Often, a customer defines a set of general objectives for

software, but does not identify detailed requirements for functions and

features.

 In other cases, the developer may be unsure of the

 efficiency of an algorithm,

 the adaptability of an operating system,

 or the form that human-machine interaction should take.

 In these, and many other situations, a prototyping paradigm may offer the

best approach.

 Although prototyping can be used as a stand-alone process model, it is more

commonly used as a technique that can be implemented within the context of

any one of the process models. Regardless of the manner in which it is applied,

the prototyping paradigm assists stakeholders to better understand what is to be

built when requirements are fuzzy.

Evolutionary Models: Prototyping

102

103

Evolutionary Models: Prototyping
 The prototyping paradigm (Figure above slide) begins with

communication. You meet with other stakeholders to define the

overall objectives for the software, identify whatever

requirements are known, and outline areas where further

definition is mandatory.

 A prototyping iteration is planned quickly, and modelling (in the

form of a “quick design”) occurs.

 A quick design focuses on a representation of those aspects of

the software that will be visible to end users (e.g., human

interface layout or output display formats).

 The quick design leads to the construction of a prototype.

 The prototype is deployed and evaluated by stakeholders,

who provide feedback that is used to further refine

requirements.

 Iteration occurs as the prototype is tuned to satisfy the

needs of various stakeholders, while at the same time

enabling you to better understand what needs to be done.

104

Evolutionary Models: Prototyping
 The prototype serves as a mechanism for identifying software

requirements.

 If a working prototype is to be built, existing program fragments

or apply tools (e.g., report generators and window managers)

can be used that enable working programs to be generated

quickly.

 But what do you do with the prototype when it has served the purpose

described earlier? Brooks provides one answer:

 In most projects, the first system built is barely usable. It may be too

slow, too big, awkward in use or all three. There is no alternative but

to start again, smarting but smarter, and build a redesigned version in

which these problems are solved.

 The prototype can serve as “the first system.” The one that Brooks

recommends you throw away. But this may be an idealized view.

Although some prototypes are built as “throwaways,” others are

evolutionary in the sense that the prototype slowly evolves into the

actual system.

105

Evolutionary Models: Prototyping
 Both stakeholders and software engineers like the

prototyping paradigm. Users get a feel for the actual

system, and developers get to build something

immediately. Yet, prototyping can be problematic for the

following reasons:

 1. Stakeholders see what appears to be a working version of the

software,

 unaware that the prototype is held together haphazardly,

 unaware that in the rush to get it working you haven’t

considered overall software quality or long-term maintainability.

 When informed that the product must be rebuilt so that high levels of

quality can be maintained, stakeholders cry foul and demand that “a few

fixes” be applied to make the prototype a working product. Too

often, software development management relents.`

106

Evolutionary Models: Prototyping
 2. A software engineer, often compromises implementation

in order to get a prototype working quickly.

 An inappropriate operating system or programming language may

be used simply because it is available and known;

 an inefficient algorithm may be implemented simply to demonstrate

capability.

• After a time, you may become comfortable with these

choices and forget all the reasons why they were

inappropriate.

• The less-than-ideal choice has now become an integral part

of the system.

107

Evolutionary Models: Prototyping
 Although problems can occur, prototyping can be an effective

paradigm for software engineering.

 The key is to define the rules of the game at the beginning; that

is, all stakeholders should agree that the prototype is built

to serve as a mechanism for defining requirements.

 It is then discarded (at least in part), and the actual software is

engineered with an eye toward quality.

 An early example of large-scale software prototyping was the

implementation of NYU's Ada/ED translator for the Ada programming

language.[2] It was implemented in SETL with the intent of producing an

executable semantic model for the Ada language, emphasizing clarity

of design and user interface over speed and efficiency. The NYU

Ada/ED system was the first validated Ada implementation, certified on

April 11, 1983.

https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/SETL

108

Evolutionary Models: The Spiral

communication

planning

modeling

construction
deployment

 delivery

 feedback

start

analysis

design

code

test

estimation

scheduling

risk analysis

 This is proposed by Barry Boehm.

 It couples the iterative nature of prototyping with the

controlled and systematic aspects of the waterfall

model and is a risk-driven process model generator

that is used to guide multi-stakeholder concurrent

engineering of software intensive systems.

 Two main distinguishing features:

 One is cyclic approach for incrementally growing a

system’s degree of definition and implementation while

decreasing its degree of risk.

 The other is a set of anchor point milestones for ensuring

stakeholder commitment to feasible and mutually

satisfactory system solutions.

 109

Evolutionary Models: The Spiral

Evolutionary Models: The Spiral

 A series of evolutionary releases are delivered.

 During the early iterations, the release might be a model

or prototype.

 During later iterations, increasingly more complete

version of the engineered system are produced.

 A spiral model is divided into a set of framework activities

defined by the software engineering team.

 Each of the framework activities represent one segment of

the spiral path illustrated in Figure above.

 As this evolutionary process begins, the software team

performs activities that are implied by a circuit around the

spiral in a clockwise direction, beginning at the center.

110

Evolutionary Models: The Spiral

 Risk is considered as each revolution is made.

 Anchor point milestones—a combination of work products

and conditions that are attained along the path of the

spiral—are noted for each evolutionary pass.

 The first circuit around the spiral might result in the

development of a product specification; subsequent

passes around the spiral might be used to develop a

prototype and then progressively more sophisticated

versions of the software.

 Each pass through the planning region results in adjustments to

the project plan.

 Cost and schedule are adjusted based on feedback derived from

the customer after delivery.

 The project manager adjusts the planned number of iterations

required to complete the software.

111

Evolutionary Models: The Spiral

 Unlike other process models that end when software is

delivered, the spiral model can be adapted to apply throughout

the life of the computer software.

 Therefore, the first circuit around the spiral might represent a

“concept development project” that starts at the core of the

spiral and continues for multiple iterations until concept

development is complete.

 If the concept is to be developed into an actual product, the

process proceeds outward on the spiral and a “new product

development project” commences.

 The new product will evolve through a number of iterations

around the spiral.

 Later, a circuit around the spiral might be used to represent a

“product enhancement project.”

112

Evolutionary Models: The Spiral

 The spiral, when characterized in this way, remains

operative until the software is retired. There are times when

the process is dormant, but whenever a change is initiated,

the process starts at the appropriate entry point (e.g.,

product enhancement).

 The spiral model is a realistic approach to the development

of large-scale systems and software.

 Because software evolves as the process progresses, the

developer and customer better understand and react to

risks at each evolutionary level.

 The spiral model uses prototyping as a risk reduction

mechanism and enables to apply the prototyping approach

at any stage in the evolution of the product. 113

Evolutionary Models: The Spiral

 It maintains the systematic stepwise approach suggested by the

classic life cycle but incorporates it into an iterative framework

that more realistically reflects the real world.

 The spiral model demands a direct consideration of technical

risks at all stages of the project and, if properly applied, should

reduce risks before they become problematic.

 Disadvantages:

 But like other paradigms, the spiral model is not a panacea.

 It may be difficult to convince customers (particularly in

contract situations) that the evolutionary approach is

controllable.

 It demands considerable risk assessment expertise and relies

on this expertise for success.

 If a major risk is not uncovered and managed, problems will

undoubtedly occur.

114

115

Unified Process
 Unified Process—a “use-case driven, architecture-centric,

iterative and incremental” software process closely aligned

with the Unified Modeling Language (UML) proposed by Ivar

Jacobson, Grady Booch, and James Rumbaugh .

 The Unified Process recognizes the importance of customer

communication and streamlined methods for describing the

customer’s view of a system (the use case).

 It emphasizes the important role of software architecture and

“helps the architect focus on the right goals, such as

understandability, reliance to future changes, and reuse”.

116

Unified Process contd.,

 Unified Process Brief History: During the early 1990s

James Rumbaugh, Grady Booch, and Ivar Jacobson

began working on a “unified method” that would combine

the best features of each of their individual object-oriented

analysis and design methods and adopt additional features

proposed by other experts in object-oriented modelling.

 The result was UML—a unified modelling language that

contains a robust notation for the modelling and

development of object-oriented systems. By 1997, UML

became a de facto industry standard for object-oriented

software development

117

Unified Process contd.,

 UML, is used to represent both requirements and design

models, presents an introductory tutorial for those who are

unfamiliar with basic UML notation and modelling rules.

 UML provided the necessary technology to support object-

oriented software engineering practice, but it did not provide

the process framework to guide project teams in their

application of the technology.

 Over the next few years, Jacobson, Rumbaugh, and Booch

developed the Unified Process, a framework for object-

oriented software engineering using UML.

118

Unified Process contd.,

 Today, the Unified Process (UP) and UML are widely used on

object-oriented projects of all kinds.

 The iterative, incremental model proposed by the UP can

and should be adapted to meet specific project needs.

 Phases of the Unified Process:

 Five generic framework activities are used to describe any

software process model. The Unified Process also use

these same activities.

 Figure (next slide) depicts the “phases” of the UP and relates

them to the generic activities

119

The Unified Process (UP)

soft ware increment

Release

Incept ion

Elaborat ion

const ruct ion

t ransit ion

product ion

inception

elaboration

Unified Process contd.,

 The inception phase of the UP encompasses both

customer communication and planning activities.

 By collaborating with stakeholders,

 business requirements for the software are identified;

 a rough architecture for the system is proposed; and

 a plan for the iterative, incremental nature of the ensuing

project is developed.

 Fundamental business requirements are

described through a set of preliminary use cases

that describe which features and functions each

major class of users desires.

120

Unified Process contd.,

 Architecture, here, is a tentative outline of

major subsystems and the function and

features that populate them.

 Later, the architecture will be refined and

expanded into a set of models that will represent

different views of the system.

 Planning identifies resources, assesses major

risks, defines a schedule, and establishes a

basis for the phases that are to be applied as the

software increment is developed.

121

Unified Process contd.,

 The elaboration phase encompasses the planning

and modelling activities of the generic process

model (Figure above slide).

 Elaboration refines and expands the preliminary use

cases that were developed as part of the inception

phase and expands the architectural representation

to include five different views of the software—

• the use case model,

• the requirements model,

• the design model,

• the implementation model, and

• the deployment model. 122

Unified Process contd.,

 In some cases, elaboration creates an

“executable architectural baseline” that

represents a “first cut” executable system.

 The architectural baseline demonstrates the

viability of the architecture but does not provide

all features and functions required to use the

system.

 The plan is carefully reviewed at the

culmination of the elaboration phase to ensure

that scope, risks, and delivery dates remain

reasonable.

 Modifications to the plan are often made at this

time. 123

Unified Process contd.,

 The construction phase of the UP is identical to

the construction activity defined for the generic

software process.

 Using the architectural model as input, the

construction phase develops or acquires the

software components that will make each use

case operational for end users.

 To accomplish this, requirements and design

models that were started during the

elaboration phase are completed to reflect the

final version of the software increment.

124

Unified Process contd.,

 All necessary and required features and

functions for the software increment (i.e., the

release) are then implemented in source code.

 As components are being implemented, unit

tests are designed and executed for each.

 Integration activities (component assembly

and integration testing) are conducted.

 Use cases are used to derive a suite of

acceptance tests that are executed prior to the

initiation of the next UP phase.

125

Unified Process contd.,

 The transition phase of the UP encompasses the latter

stages of the generic construction activity and the first

part of the generic deployment (delivery and feedback)

activity.

 Software is given to end users for beta testing and

user feedback reports both defects and necessary

changes.

 The software team creates the necessary support

information (e.g., user manuals, troubleshooting guides,

installation procedures) that is required for the release.

 At the conclusion of the transition phase, the software

increment becomes a usable software release.
126

Unified Process contd.,

 The production phase of the UP coincides with the

deployment activity of the generic process.

 During this phase, the on going use of the software

is monitored, support for the operating

environment (infrastructure) is provided, and

defect reports and requests for changes are

submitted and evaluated.

 It is likely that at the same time the construction,

transition, and production phases are being conducted,

work may have already begun on the next software

increment.

 This means that the five UP phases do not occur in a

sequence, but rather with staggered concurrency. 127

Unified Process contd.,

 A software engineering workflow (figure next slide)is

distributed across all UP phases. In the context of UP,

a workflow is analogous to a task set.

 A workflow identifies the tasks required to

accomplish an important software engineering

action and the work products(Figure the next slide)

that are produced as a consequence of

successfully completing the tasks.

 It should be noted that not every task identified for a

UP workflow is conducted for every software project.

 The team adapts the process (actions, tasks, subtasks,

and work products) to meet its needs.
128

129

UP Phases

Incept ion Elaborat ion Const ruct ion Transit ion Product ion

UP Phases

Workflows

Requirements

Analysis

Design

Implementation

Test

Iterations #1 #2 #n-1 #n

Support

130

UP Work Products
Incept ion phase

Elaborat ion phase

Const ruct ion phase

Transit ion phase

Vision document

Init ial use-case model

Init ial project glossary

Init ial business case

Init ial risk assessment .

Project plan,

 phases and it erat ions.

Business model,

 if necessary .

One or more prot ot ypes
I nc e p t i o

n

Use-case model

Supplement ary requirement s

 including non-funct ional

Analysis model

Soft ware archit ect ure

 Descript ion.

Execut able archit ect ural

 prot ot ype.

Preliminary design model

Rev ised risk list

Project plan including

 it erat ion plan

 adapt ed workf lows

 milest ones

 t echnical work product s

Preliminary user manual

Design model

Soft ware component s

Int egrat ed soft ware

 increment

Test plan and procedure

Test cases

Support document at ion

 user manuals

 inst allat ion manuals

 descript ion of current

 increment

Delivered soft ware increment

Bet a t est report s

General user feedback

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014) Slides copyright 2014 by Roger Pressman. 131

What is “Agility”?

 Effective (rapid and adaptive) response to
change

 Effective communication among all stakeholders

 Drawing the customer onto the team

 Organizing a team so that it is in control of the
work performed

Yielding …

 Rapid, incremental delivery of software

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014) Slides copyright 2014 by Roger Pressman. 132

Agility and the Cost of Change

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014) Slides copyright 2014 by Roger Pressman. 133

An Agile Process

 Is driven by customer descriptions of what is

required (scenarios)

 Recognizes that plans are short-lived

 Develops software iteratively with a heavy

emphasis on construction activities

 Delivers multiple „software increments‟

 Adapts as changes occur

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014) Slides copyright 2014 by Roger Pressman. 134

Scrum

 Originally proposed by Schwaber and Beedle

 Scrum—distinguishing features
 Development work is partitioned into “packets”

 Testing and documentation are on-going as the
product is constructed

 Work occurs in “sprints” and is derived from a
“backlog” of existing requirements

 Meetings are very short and sometimes conducted
without chairs

 “demos” are delivered to the customer with the time-
box allocated

These slides are designed to accompany Software Engineering: A Practitioner’s Approach, 8/e

(McGraw-Hill, 2014) Slides copyright 2014 by Roger Pressman. 135

Scrum

