

%, Topics — Unit 4

The Planning problem

planning with state space search
Planning graphs

Planning with propositional logic
Analysis of planning approaches
Hierarchical planning
Conditional planning

Continuous and Multi Agent planning.

Planning problem

» An agent interacts with the world via perception and actions.

» Perception involves sensing the world and assessing the
situation.

» Creating some internal representation of the world.

» Actions are what the agent does in the domain. Planning

involves reasoning about actions that the agent intends to carry

out.

Planning is the reasoning side of acting.

This reasoning involves the representation of the world that the

agent has, as also the representation of its actions.

Hard constraints where the objectives have to be achieved

completely for success.

The objectives could also be soft constraints, or preferences, to

be achieved as much as possible.

YV YV VV

Types of Planning

Projection into the future
The planner searches through the possible combination of
actions to find the p/an that will work

Memory based planning
looking into the past
The agent can retrieve a plan from its memory

Planning as a state-space search problem

Planning procedures are often state-space search problem, i.e. find a path on a
state-space

Nodes = states of the world
Transitions between nodes = actions
Path on the state-space = plan
It is possible to explore the state-space in different ways
forward,
backward
With different strategies (breath-first, depth-first, best-first, greedy)

Using heuristics The STanford Research Institute Problem Solver (STRIPS)
representation enables an efficient exploration

Continued...

The most straight forward approach is to use state-space search. Because the
descriptions of actions in a planning problem specity both preconditions and effects, it

is possible to search in either direction: forward from the initial state or backward
from the goal

Forward State-Space Search

Planning with forward state-space search is similar to the
problem-solving approach. It is sometimes called
progression planning, because it moves in the forward
direction.

We start with the problem’s initial state, considering
sequences of actions until we reach a goal state.

Formulation of planning problem

The initial state of the search is the initial state from the planning problem. In general each state
will be set of positive ground literals; literals not appearing are false.

The actions which are applicable to a state are all those whose preconditions are satisfied. The
successor state resulting from an action is generated by adding the positive effect literals and
deleting the negative effect literals.

The goal test checks whether the state satisfies the goal of the planning problem.

The step cost of each action is typically 1. Although it would be easy to allow different costs for
different actions, this was seldom done by STRIPS planners.

Backward State-Space Search

Backward search can be difficult to implement when the goal states are described by a
set of constraints which are not listed explicitly. In particular, it is not always obvious how
to generate a description of the possible predecessors of the set of goal states. The
STRIPS representation makes this quite easy because sets of states can be described by
the literals which must be true in those states.

Formulation of planning problem

It is a search in the reverse direction: start with the goal
state, expand the graph by computing parents.

The parents are computed by regressing actions: given a
ground goal description g and a ground action a, the
regression from g overais g": g’ = (g- ADD (a))U
PRECOND (a).

Forward Vs Backward

ANP,, B)
Fly (P,. A, B) At(Fy A)
@) AHP A)
AHP, A)
Fly (P, A, B)
AlP,. A)
At(P,, B)
Fly (P,, A, B)
(b) ANP,, B)

At(P,, B)

Fig. 8.5. Two approaches to searching for a plan, (a) Forward (Progression) state-space search, startin ¢ in
the initial state and using the problem’s actions to search forward for the goalstate, (b) Backward
(regression) state-space search:a belief-state search starting at the goal statc(s)and usin ¢ the inverse of the
actions to search backward for the initial state.

Planning Graphs

Planning graphs play a vital role in Al planning
by visually representing possible states and
actions that aid in decision-making. This article
explores STRIP-like(STanford Research Institute
Problem Solver) domains that construct and
analyze the compact structure called graph
planning.

Planning Graphs

Planning graphs consists of a sequence of levels
that correspond to time steps in the plan.

Level O is the initial state.

Each level consists of a set of literals and a set

of actions that represent what might be possible
at that step in the plan.

Records only a restricted subset of possible
negative interactions among actions.

Continued...

Each level consists of

Literals = all those that could be true at that
time step, depending upon the actions executed
at preceding time steps.

Actions = all those actions that could have
their preconditions satisfied at that time step,
depending on which of the literals actually hold.

Example

Init(Have(Cake))
Goal(Have(Cake) N Eaten(Cake))

Action(Eat(Cake),
PRECOND: Have(Cake)

EFFECT: "Have(Cake) N Eaten(Cake))

Action(Bake(Cake),
PRECOND: 7 Have(Cake)

EFFECT: Have(Cake))

Initial Graph at LO
SO AO

Have(Cake)

— Eaten(Cake)

Create level 0 from initial problem state.

Graph at L1

So Ao S

Have(Cake)
—i1Have(Cake)
Eat(Cake) |<

Eaten(Cake)
— Eaten(Cake)

Add all applicable actions.

Add all effects to the next state.

Graph at L1 updated

SU AO 81

Have(Cake) = Have(Cake)
\ —Have(Cake)

Eat(Cake) <
Eaten(Cake)

— Eaten(Cake) = — Eaten(Cake)

Add persistence actions (inaction = no-ops) to
map all literals in state S, to state S,, ;.

Graph with Mutual Exclusion

80 AO S'l

Have(Cake) = Have(Cake)
\ —Have(Cake)

Eat(Cake) <
Eaten(Cake)

— Eaten(Cake) = — Eaten(Cake)

Identify mutual exclusions between actions and
literals based on potential conflicts.

Mutual exclusion

A mutex relation holds between two actions when:
Inconsistent effects: one action negates the effect of another.

Interference: one of the effects of one action is the negation of a
precondition of the other.

Competing needs: one of the preconditions of one action is mutually
exclusive with the precondition of the other.

A mutex relation holds between two literals when:
One is the negation of the other.

Each possible action pair that could achieve the literals is mutex
(inconsistent support).

Algorithm

function GRAPHPLAN (problem)
returns a solution, or failure

graph < INITIAL-PLANNING-GRAPH (problem)
goals <+ GOALS[problem]
loop do
if goals all non-mutex in last level of graph then do
solution + EXTRACT-SOLUTION (graph, goals, LENGTH (graph))
if solution # failure then return solution
else if NO-SOLUTION-POSSIBLE(graph) then return failure
graph < EXPAND-GRAPH (graph, problem)

planning using propositional logic
We’ve seen that plans might be extracted from a knowledge base via
, using and
: this might be computationally infeasible for realistic problems.

Sophisticated techniques are available for testing in
, and these have also been applied to planning.

The basic idea is to attempt to find a model of a sentence having the form

We attempt to construct this sentence such that:
« If '/ is a model of the sentence then assigns to a proposition if and
only if it is in the plan.

« Any assignment denoting an incorrect plan will not be a model as the goal
description will not be

- The sentence is unsatisfiable if no plan exists.

Planning in the propositional logic

@ Early work on deductive planning viewed plans as
proofs that lead to a desired goal (theorem).
@ Planning as satisfiability testing was proposed in 1992.

@ A propositional formula represents all length n action
sequences from the initial state to a goal state.
© If the formula is satisfiable then a plan of length n exists.

@ Satisfiability planning is the best approach to solve
difficult planning problems.
Heuristic search is often more efficient on very big but
easy problems.

Planning in the propositional logic

@ Represent actions (= binary relations) as propositional
formulae.

@ Construct a formula saying “execute one of the actions”.

© Construct a formula saying “execute a sequence of n
actions, starting from the initial state, ending in a goal
state”

© Test the satisfiability of this formula by a satisfiability
algorithm.

@ If the formula is satisfiable, construct a plan from a
satisfying valuation.

3

Two roof-climbers want to -0 ol

Propositional logic for planning

Start state:

S = At"(a,spire] A At"(b. ground
—At (a, ground —At |b, spire

Remember that an expression such as "+ = =pi:-o isa pvoposition. The super-

scripted number now denotes time.

Example continued...

Propositional logic for planning

: can be introduced using the equivalent of successor-state axioms

(1)

Denote by | the collection of all such axioms.

Example continued...

Propositional logic for planning

We will now find that has a model in which
and are while all remaining actions are

In more realistic planning problems we will clearly not know in advance at what
time the goal might expect to be achieved.

We therefore:

« Loop through possible final times
« Generate a goal for time | and actions up to time
« Try to find a model and extract a plan.

« Until a plan is obtained or we hit some maximum time.

Example continued...

Propositional logic for planning

Life becomes more complicated still if a third location is added:

is perfectly valid and so we need to specify that he can’t move to two places

simultaneously

and so on.

These are axioms.

Unfortunately they will tend to produce rather than

plans.

Hierarchical planning

Hierarchical Planning is an Artificial Intelligence (Al) problem
solving approach for a certain kind of planning problems -- the
kind focusing on problem decomposition, where problems are
step-wise refined into smaller and smaller ones until the problem
is finally solved. A solution hereby is a sequence of actions that's
executable in a given initial state. This form of hierarchical

planning is usually referred to as Hierarchical Task Network
(HTN) planning.

Hierarchical planning

Principle
hierarchical organization of 'actions’
complex and less complex (or: abstract) actions
lowest level reflects directly executable actions

Procedure
planning starts with compiex action on top
plan constructed through action decomposition
substitute complex action with plan of less complex
actions (pre-defined plan schemata; or learning of
plans/plan abstraction)
overall plan must generate effect of complex action

Hierarchical planning

Hierarchical Planning / Plan Decomposition

Plans are organized in a hierarchy. Links between
nodes at different levels in the hierarchy denote a
decomposition of a “complex action” into more
primitive actions (operator expansion).

Example:

move (X, VY, Z)
operator
expansion pickup (X, y) putdown (X, z)

The lowest level corresponds to executable actions of
the agent.

Hierarchical planning- Example

Travel (source dest.)

Take-Plane Take Bus Take-Car

N

Goto (bus, source) Buy-Ticket (bus) Hop-on (bus) Leave (bus, dest.)

Goto (counter) Request (ticket) Pay (ticket)

Components of Hierarchical
Planning

Artificial intelligence (Al) hierarchical planning usually entails the following
essential elements:

High-Level Goals: High-level goals provide the initial direction for the

planning process and guide the decomposition of tasks into smaller sub-
goals.

Tasks: Tasks are actions that need to be performed to accomplish the
high-level goals.

Sub-Goals: Sub-goals are intermediate objectives that contribute to the
accomplishment of higher-level goals. Sub-goals are derived from

Components of Hierarchical
Planning

Hierarchical Structure: Hierarchical planning organizes tasks and goals
into a hierarchical structure, where higher-level goals are decomposed into
sub-goals, and sub-goals are further decomposed until reaching primitive
actions that can be directly executed.

Task Dependencies and Constraints: Hierarchical planning considers
dependencies and constraints between tasks and sub-goals. These
dependencies determine the order in which tasks need to be executed and
any preconditions that must be satisfied before a task can be performed.

Components of Hierarchical
Planning

Plan Representation: Plans in hierarchical planning are represented as
hierarchical structures that capture the sequence of tasks and sub-goals
required to achieve the high-level goals. This representation facilitates
efficient plan generation, execution, and monitoring.

Plan Evaluation and Optimization: Hierarchical planning involves
evaluating and optimizing plans to ensure they meet the desired criteria,
such as efficiency, feasibility, and resource utilization. This may involve
iteratively refining the plan structure or adjusting task priorities to improve
performance.

Hierarchical Planning
Techniques in Al

Hierarchical Task Networks are used for representing and
reasoning about hierarchical task decomposition. HTNs consist
of a set of tasks organized into a hierarchy, where higher-level
tasks are decomposed into sequences of lower-level tasks.
HTNs provide a structured framework for planning and
execution, allowing for the efficient generation of plans that
satisfy complex goals and constraints.

Hierarchical Planning
Techniques in Al

Hierarchical Reinforcement Learning is extension of
reinforcement learning, it leverages hierarchical structures to
facilitate learning and decision-making in complex
environments. In HRL, tasks are organized into a hierarchy of
sub-goals, and the agent learns policies for achieving these
sub-goals at different levels of abstraction. By learning
hierarchies of policies, HRL enables more efficient exploration
and exploitation of the environment, leading to faster learning
and improved performance.

Hierarchical Planning
Techniques in Al

Hierarchical state space search is a planning technique
that involves exploring the state space of a problem in a
hierarchical manner. Instead of directly exploring individual
states, hierarchical state space search organizes states into
hierarchical structures, where higher-level states represent
abstract representations of the problem space. This
hierarchical exploration allows for more efficient search and

pruning of the state space, leading to faster convergence and
iImproved scalability.

Challenges and Limitations of Hierarchical Planning
Although hierarchical planning has many benefits, there are
some challenges and limitations as well:

‘Planning Complexity: As the number of tasks rises, both the
initial decomposition and the following planning may become
computationally demanding.

-Adaptability: Modifications to the environment or the main
objectives may call for a thorough re-planning process that
may demand a large amount of resources.

Conditional planning

It works regardless of the outcome of an action. It deals
with uncertainty by inspecting what is happening in the
environment at predetermined points in the plan. It can
take place in fully observable and non-deterministic
environments. It will take actions and must be able to
handle every outcome for the action taken.

Continued...

What’s Conditional Planning?

= It's a planning method for handling bounded indeterminacy.

e Bounded Indeterminacy — actions can have unpredictable
effects, but the possible effects can be determined.

Ex: flip a coin (outcome will be head or tail)

= It constructs a conditional plan with different branches for
the different contingencies that could arise.

= It's a way to deal with uncertainty by checking what is
actually happening in the environment at predetermined
points in the plan. (Conditional Steps)

= Example:

e Check whether SFO airport is operational. If so, fly there;
otherwise, fly to Oakland.

Continued...

Three kind of Environments

= Fully Observable

e The agent always knows the current state

= Partially Observable

e The agent knows only a certain amount about
the actual state. (much more common in real
world)

= Unknown

e The agent knows nothing about the current
state

Continued...

Conditional Planning in Fully
Observable Environments
= Agent used conditional steps to

check the state of the environment
to decide what to do next.

= Plan information stores in a library
Ex: Action(Left) > Clean v Right

= Syntax:
If <test> then plan_A else plan_B

Continued...

AND-OR-Graph-Search

« Modify Minimax Algorithm

e MAX node - OR node
= It returns a single move/plan for an action

e MIN node = AND node

» It returns a series of plans for each action

Continued...

Example of AND-OR-Graph

Plan: Take her

out
Action: Acquire Ask her

information
AcquireInfo |Ask her Borrow her |Borrow
Action: friend diary her

PDA

AskHerFriend |Go to Friend |Send
Action: Message

Continued...

Function AND-OR-GRAPH-SEARCH (problem) returns a conditional
plan, or failure

OR-SEARCH (INITIAL-STATE[problem], problem,[])

Function OR-SEARCH(state,problem, path) returns a conditional plan,
or failure

if GOAL-TEST[problem](state) then return the empty plan

if state is on path then return failure

for each action, state_set in SUCCESSORS[problem](state) do
plan € AND-SEARCH(state_set, problem, [state | path])
if plan = failure then return [action | plan]

return failure

Function AND-SEARCH(state set, problem, path) returns a
conditional plan, or failure

for each S(i) in state_set do

plan(i) € OR-SEARCH(S(i), problem, path)

if plan = failure then return failure
return [if s(1) then plan(1) else if s(2) then plan(2) else... if S(n-1)
then plan(n-1) else plan(n)]

Continued...

Good Thing About AND-OR Graph
Search

= The way it deal with cycle

= If the current state is identical to a state on the path
from the root, then it returns with failure; it means
that if there is a noncyclic solution, it must be
reachable from the earlier incarnation of the current
state, so the new incarnation can be discarded

= Algorithm can terminate in every finite state space

» But it doesn’t check whether the
current state is a repetition of a state
on some other path from the root

Continued...

Failure of AND-OR-Graph-Search

=« "Triple Murphy” Vacuum World -
there are no longer any acyclic
solution, and this algorithm would
return with failure

B P
T

Left T Sucic

ol 3

GOAL

Continued...

Possible Solution For AND-OR-
Graph-Search Failure

s Solution:

e Cyclic solution - keep trying Left or Right
until it is clean, but it doesn’t guaranteed
succeed.

[L1 : Left, if AtR then L1 elseif CleanL
then [] else Suck]

Partially Observable Environments

= It used the same AND-OR-Graph-Search algorithm,
but the belief states will defy differently.

= Three choices for belief states:

1. Sets of full state descriptions

Ex: {fAtR and CleanR and CleanL), (AtR and CleanR and not
CleanL)}

(not good, the size will become O(2n))

2. Logical sentences that capture exactly the set of possible
worlds (Open-world Assumption)
Ex: AtR and CleanR
(not that good, it can't represent all domains)

3. Knowledge Propositions - describe the agent’s knowledge
(Closed-world Assumption)

Ex: K(P) = means the agent knows that P is true, if it doesn't
appear, it's assumed false.

Partially Observable Environments

= Any scheme capable of
representing every possible belief
state will require O(log2(272n)) =
O(27n) bit to represent each one in
the worst case.

= Two kind of Sensing
1. Automatic - auto. Check the state

2. Active - agents must use sensory
action to check the state of
environment. ex: CheckDirt

Disadvantages

= Agents are not capable of making
tradeoffs between the probability of
success and the cost of plan construction

= Conditional Planning is harder than NP

e NP means that a candidate solution can be
checked to see whether it really is a solution in
polynomial time

= Use a lot of space O(2/n)

Continuous and Multi Agent planning

Multi Agent Systems (MAS)

» A'multi-agent system is a system in which there
are several agents in the same environment which
co-operate at least part of the time.

» Complexity of the path planning systems for
MAS
(MASPP) increase exponentially with the
number of
moving agents.

Environment

Perception and Action

Y

Exchange
Information

.
o

Coordinate
Actions

3 Communication

Agents |

Cooperate and Coordinate

Achieve Common
Goals

—»| Collaboration

Continued...

Problems with M ASPP

e Possible problems of applying ordinary PP methods
to MAS are,

Collisions,

Deadlock situations, etc.

Problems with MASPP are,

Computational overhead,

Information exchange,

Communication overhead, etc.

Multiagent Planning System
Architecture

At its core, multiagent planning system involves:

Goal Specification: Agent grouping / coordination with a single objective or target
on which they apply their efforts.

Knowledge Sharing: For instance, the missions may exchange important
intelligence that can be an integral part of decision making.

Action Coordination: Enacting meticulous actions coherently among agents in the
side stepping of conflicts and in the disease of synergy.

Adaptation: Strategy to include planning for overcoming the changing challenges
or goal that may evoke on a constant basis and be capable to adapt.

Collaboration Stratergy
Task Information

Allocation Sharding

y —
Task Knowledge
Assesment Sharing

Agent
\ V—+ Y YY kKnowledge
e Shari
———1— Agentl Agent3 Agent?2 « N
A I
Freception Feedback Update Query
l Environment+ A 4
Environment

Approaches in Multi Agent Environment

Centralized Planning: In the case of the centralized planning, one unit or the
central controller decides what to do for all the agents from the whole system’s
state.

Decentralized Planning: Decentralized planning is the process where each agent
makes its own decisions depending on the information available locally and the
limited communication with other agents.

Distributed Planning: The so-called distributed planning is a mixed-up method
where agents have to share some info and adjust their plans in order to obtain the
common world objectives.

Multiagent Planning
Techniques

Distributed Problem-Solving Algorithms: The agents in these algorithms break
down the complicated problems into the easy-to-handle sub-tasks and the agents
then distribute these sub-tasks among themselves.

Game Theory: It furnishes a tool for studying the strategic relationships among
agents.

Multiagent Learning: The multiagent learning process is based on the agents’
enhancement of their performance by the means of their experience and interaction
with other agents.

Communication Protocols: The communication and coordination of the agents
that are structured and have a clear protocol of the information exchange and
synchronization amongst them, is a tool for the agents to exchange the information
and be synchronized.

Advantages of Multiagent
Planning in Al

Efficiency: Dividing tasks between all the agents can accelerate already
functioning methods and processes for solving problems and making decisions.

Robustness: Shared intelligence increases the system reliability allowing seamless
operation despite of one or few agents faults and/or a changing environment.

Scalability: The decentralized design of multiagent systems brings scalability

advantage as it is easy to add more agents or components without facing integration
issues.

Flexibility: Agents’ smartness and communications system qualities facilitate
instant changes to proper reaction to changing conditions.

Applications of Multi-Agent
Planning in Al

Robotics: Coordinating Multiple Robots
Traffic Management: Traffic-flow-optimization
Supply Chain Management: Planning Logistics

Multiplayer Games: Smart Agents for Strategy
in a Game

Smart Grids: Energy supply reduction in worst-
case scenarios.

