

Topics

Solving Problems by Searching: Problem
Solving Agents, Searching for Solutions.

Uninformed Search Strategies- Breadth first
search, depth first Search

Informed (Heuristic) Search Strategies- Hill
climbing, A* Algorithm, Alpha-Beta Pruning,
Constraint Satisfaction Problem.

Problem-solving agents

Problem solving agents are goal-directed agents:

Goal Formulation: Set of one or more (desirable) world states
(e.g. checkmate in chess).

Problem formulation: What actions and states to consider given a
goal and an initial state.

Search for solution: Given the problem, search for a solution --- a
sequence of actions to achieve the goal starting from the initial

state.
4. Execution of the solution

Terminology

Search Space: Search space represents a set of possible solutions, which a system may have.
Start State: It is a state from where agent begins the search.

Goal test: It is a function which observe the current state and returns whether the goal state is achievec
or not.

Search tree: A tree representation of search problem is called Search tree. The root of the search tree is
the root node which is corresponding to the initial state.

Actions: It gives the description of all the available actions to the agent.

Path Cost: It is a function which assigns a numeric cost to each path.

Solution: It is an action sequence which leads from the start node to the goal node.
Optimal Solution: If a solution has the lowest cost among all solutions.

Water Jug Problem

Rule Left of Rule OR Right of Rule Description
No CONDITION OR OPERATION
1 (X,Y | X<5) (5,Y) Fill 5-L Jug
2 (X,Y | X>0) (0,Y) Empty 5-L Jug
3 (X,Y] Y<3) (X,3) Fill 3-L Jug
4 (X,Y]Y>0) (X,0) Empty 3-L Jug
5 (X,Y | X+Y<=5& Y>0) (X+Y,0) Empty 3-L Jug into 5-L Jug
6 (XY | X+Y<=3 & X>0) (0,X+Y) Empty 5-L Jug into 3-L Jug
7 (XY | X+Y>=5 & Y>0) (5,Y-(5-X)) Pour water from 3-L Jug into 5-L jug until 5-L Jug is full
8 (XY | X+Y>=3 & X>0) (X-(3-Y),3) Pour water from 5-L Jug into 3-L jug until 3-L Jug is full

Water Jug Problem (X-m, Y-n), m>n

Rule Left of Rule OR Right of Rule OR Description
No CONDITION OPERATION
1 (X,Y | X<m) (m,Y) Fill m-L Jug
2 (X,Y | X>0) 0,Y) Empty m-L Jug
3 (X,Y | Y<n) (X, n) Fill n-L Jug
4 (X,Y | Y>0) (X, 0) Empty n-L Jug
5 (XY | X+Y<=m & Y>0) (X+Y, 0) Empty n-L Jug into m-L Jug
6 (XY | X+Y<=n & X>0) (0, X+Y) Empty m-L Jug into n-L Jug
7 (XY | X+Y>=m & Y>0) (m, Y-(m-X)) Pour water from n-L Jug into m-L jug until m-L Jug is full
8 (XY | X+Y>=n & X>0) (X-(n-Y), n) Pour water from m-L Jug into n-L jug until n-L Jug is full

SEARCHING FOR SOLUTIONS

The possible action sequences starting at the initial state
form a search tree with the initial state at the root; the
branches are actions and the nodes correspond to
states in the state space of the problem.

We do this by expanding the current state; that is,
applying each legal action to the current state, thereby
generating a new set of states.

The set of all leaf nodes available for expansion at any
given point is called the frontier.

Infrastructure for search algorithms

Search algorithms require a data structure to keep track of the search
tree that is being constructed. For each node n of the tree, we have a
structure that contains four components:

* N.STATE: the state in the state space to which the node corresponds;
* n.PARENT: the node in the search tree that generated this node;

* n.ACTION: the action that was applied to the parent to generate the
node;

* n.PATH-COST: the cost, traditionally denoted by g(n), of the path from
the initial state to the node, as indicated by the parent pointers.

Measuring problem-solving performance

Completeness: Is the algorithm guaranteed to
find a solution when there is one?

Optimality: Does the strategy find the optimal
solution?

Time complexity: How long does it take to find a
solution?

Space complexity: How much memory is needed
to perform the search?

Uninformed Search Algorithms

Uninformed search is a kind of general-purpose search
method that uses brute force to get results. Because
uninformed search algorithms have no extra knowledge
about the state or searching region beyond how to
traverse the tree, it is sometimes referred to as blind
search.

Breadth-first Search
Depth-first Search

Breadth-first search (BFS)

Breadth-first search is the most common search

strategy for traversing a tree or graph. This
algorithm searches breadthwise in a tree or
graph, so it is called breadth-first search.

BFS algorithm starts searching from the root
node of the tree and expands all successor node
at the current level before moving to nodes of
next level.

BFS Searching Technique

Advantages:
BFS will provide a solution if any solution exists.

If there are more than one solutions for a given problem, then BFS will provide
the minimal solution which requires the least number of steps.

It requires lots of memory since each level of the tree must be saved into
memory to expand the next level.

BFS needs lots of time if the solution is far away from the root node.

BFS- Working

Breadth First Search

——— | Levéle| S-—->A-->B---->C-->D---

/ \\ :_>_(>3}-(-->H--->E---->F---->I-
— ¥ lLevel1l
/ Do / \

]_j' TR . ™ Level 2
/ \ - \
E F > 1 —— ™ Jevel 3

e Level 4

Water Jug Problem

Rule Left of Rule OR Right of Rule Description
No CONDITION OR OPERATION
1 (X,Y | X<5) (5,Y) Fill 5-L Jug
2 (X,Y | X>0) (0,Y) Empty 5-L Jug
3 (X,Y] Y<3) (X,3) Fill 3-L Jug
4 (X,Y]Y>0) (X,0) Empty 3-L Jug
5 (X,Y | X+Y<=5& Y>0) (X+Y,0) Empty 3-L Jug into 5-L Jug
6 (XY | X+Y<=3 & X>0) (0,X+Y) Empty 5-L Jug into 3-L Jug
7 (XY | X+Y>=5 & Y>0) (5,Y-(5-X)) Pour water from 3-L Jug into 5-L jug until 5-L Jug is full
8 (XY | X+Y>=3 & X>0) (X-(3-Y),3) Pour water from 5-L Jug into 3-L jug until 3-L Jug is full

Depth-first search (DFS)

Depth-first search is a recursive algorithm for traversing a tree
or graph data structure.

It is called the depth-first search because it starts from the root
node and follows each path to its greatest depth node before
moving to the next path.

DFS uses a stack data structure for its implementation.

The process of the DFS algorithm is similar to the BFS
algorithm.

~ DFSWorking

Depth Limited Search

DFS Searching Technique

Advantage:

DFS requires very less memory as it only needs to store a stack of the
nodes on the path from root node to the current node.

It takes less time to reach to the goal node than BFS algorithm (if it
traverses in the right path).

There is the possibility that many states keep re-occurring, and there is
no guarantee of finding the solution.

DFS algorithm goes for deep down searching and sometime it may go to
the infinite loop.

Informed Search Algorithms

The informed search algorithm is more useful for large search space.
Informed search algorithm uses the idea of heuristic, so it is also
called Heuristic search.

Heuristics function: Heuristic is a function which is used in Informed
Search, and it finds the most promising path. It takes the current state
of the agent as its input and produces the estimation of how close
agent is from the goal. The heuristic method, however, might not
always give the best solution, but it guaranteed to find a good solution
in reasonable time. Heuristic function estimates how close a state is to
the goal.

Informed Search

Hill climbing
A* Algorithm
Alpha-Beta Pruning

Hill Climbing

Hill climbing algorithm is a local search algorithm which continuously moves
in the direction of increasing elevation/value to find the peak of the mountain
or best solution to the problem. It terminates when it reaches a peak value
where no neighbour has a higher value.

Hill climbing algorithm is a technique which is used for optimizing the
mathematical problems. One of the widely discussed examples of Hill
climbing algorithm is Traveling-salesman Problem in which we need to
minimize the distance travelled by the salesman.

It is also called greedy local search as it only looks to its good
immediate neighbour state and not beyond that.

Features of Hill Climbing

Generate and Test variant: Hill Climbing is the variant of
Generate and Test method. The Generate and Test method
produce feedback which helps to decide which direction to move
in the search space.

Greedy approach: Hill-climbing algorithm search moves in the
direction which optimizes the cost.

No backtracking: It does not backtrack the search space, as it
does not remember the previous states.

Hill Climbing Different regions in the State Space Diagram:

Local Maximum: Local maximum is a state which is better oObjective function =R PR

than
its neighbour states, but there is also another state which is
higher than it.

Global Maximum: Global maximum is the best possible
state of state space landscape. It has the highest value of
objective function.

Current state: It is a state in a landscape diagram where an
agent is currently present.

shoulder

N

Local maximum

/ “flat”™ local maximum

. State space
Current

state

Flat local maximum: It is a flat space in the landscape where all the neighbour agents of current states have

the same value.

Ridge: It is a region that is higher than its neighbors but itself has a slope. It is a special kind of local

maximum.
Shoulder: It is a plateau that has an uphill edge.

Problems in different regions in Hill climbing

Hill climbing cannot reach the optimal/best state(global
maximum) if it enters any of the following regions :

Local maximum: At a local maximum all neighboring
states have a value that is worse than the current state.
Since hill-climbing uses a greedy approach, it will not
move to the worse state and terminate itself. The process
will end even though a better solution may exist.

To overcome the local maximum problem: Utilize

the backtracking technique. Maintain a list of visited states.
If the search reaches an undesirable state, it can backtrack
to the previous configuration and explore a new path.

Problems in different regions in Hill climbing

Plateau: On the plateau, all neighbors have the same
value. Hence, it is not possible to select the best direction.
To overcome plateaus: Make a big jump. Randomly
select a state far away from the current state. Chances are
that we will land in a non-plateau region.

Ridge: Any point on a ridge can look like a peak
because movement in all possible directions is downward.
Hence the algorithm stops when it reaches this state.

To overcome Ridge: In this kind of obstacle, use two or
more rules before testing. It implies moving in several
directions at once.

Applications of Hill Climbing Algorithm

Machine Learning: Hill climbing can be used for hyperparameter

tuning in machine learning algorithms, finding the best combination of
hyperparameters for a model.

Robotics: In robotics, hill climbing can help robots navigate through
physical environments, adjusting their paths to reach a destination.

Network Design: It can be used to optimize network topologies and
configurations in telecommunications and computer networks.

Game Playing: In game playing Al, hill climbing can be employed to
develop strategies that maximize game scores.

Natural Language Processing: It can optimize algorithms for tasks
like text summarization, machine translation, and speech recognition.

Algorithm for Simple Hill climbing :

Evaluate the initial state. If it is a goal state then stop and return success.
Otherwise, make the initial state as the current state.

Loop until the solution state is found or there are no new operators present which
can be applied to the current state.

Select a state that has not been yet applied to the current state and apply it to produce a new
state.

Perform these to evaluate the new state.

If the current state is a goal state, then stop and return success.

If it is better than the current state, then make it the current state and proceed further.

If it is not better than the current state, then continue in the loop until a solution is found.
Exit from the function.

Hill Climbing Algorithm

function HiLL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor +— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor

Problem: https://www.youtube.com/watch?v=wM4n12FHelM

4-Queens

States: 4 queens in 4 columns (256 states)
Neighborhood Operators: move queen in column
Evaluation / Optimization function: h(n) = number of attacks

Goal test: no attacks, i.e., h(G) =0
Initial state (guess).

h=5 h=2 h=0

Local search: Because we only consider local changes to the state
at each step. We generally make sure that series of local changes
can reach all possible states.

Hill-climbing search: 8-queens problem

18 - 14 13 . 14
16 15 - 14 - 16
m—— a— | e Ty |
14 |§2| 18 15 |42 | 14
14 w 16 16

w 17 w 16
WIS 1= (38 W 98T W

18 w 15 w

14 17 - 14 |H2| 18

* Need to convert to an optimization problem
* h = number of pairs of queens that are attacking each other
e h =17 for the above state

Types of Hill Climbing techniques

Simple Hill Climbing
Steepest-Ascent hill-climbing
Stochastic hill Climbing

Simple Hill Climbing

Simple hill climbing is the simplest way to implement a hill
climbing algorithm. It only evaluates the neighbour node state
at a time and selects the first one which optimizes current
cost and set it as a current state.

It only checks it's one successor state, and if it finds better than
the current state, then move else be in the same state.

Less time consuming
Less optimal solution and the solution is not guaranteed

Algorithm

Step 1: Evaluate the initial state, if it is goal state then return
success and Stop.

Step 2: Loop Until a solution is found or there is no new
operator left to apply.

Step 3: Select and apply an operator to the current state.

Step 4: Check new state:
If it is goal state, then return success and quit.

Else if it is better than the current state then assign new
state as a current state.

Else if not better than the current state, then return to
step2.

Step 5: Exit.

Steepest-Ascent hill-climbing

The steepest-Ascent algorithm is a variation of simple hill
climbing algorithm. This algorithm examines all the neighbouring
nodes of the current state and selects one neighbour node which
is closest to the goal state. This algorithm consumes more time
as it searches for multiple neighbours.

Algorithm

Step 1: Evaluate the initial state, if it is goal state then return success and stop, else make
current state as initial state.

Step 2: Loop until a solution is found or the current state does not change.
Let SUCC be a state such that any successor of the current state will be better than it.
For each operator that applies to the current state:
Apply the new operator and generate a new state.
Evaluate the new state.
If it is goal state, then return it and quit, else compare it to the SUCC.
If it is better than SUCC, then set new state as SUCC.

If the SUCC is better than the current state, then set current state to SUCC.
Step 5: Exit.

Algorithm

Stochastic hill climbing does not examine for all
its neighbour before moving. Rather, this search
algorithm selects one neighbour node at random
and decides whether to choose it as a current
state or examine another state.

A* Searching Algorithm

It is a searching algorithm that is used to find the
shortest path between an initial and a final point.

It searches for shorter paths first, thus making it an
optimal and complete algorithm. An optimal algorithm
will find the least cost outcome for a problem, while a
complete algorithm finds all the possible outcomes of a
problem.

Another aspect that makes A* so powerful is the use of
weighted graphs in its implementation. A weighted graph
uses numbers to represent the cost of taking each path
or course of action. This means that the algorithms can
take the path with the least cost, and find the best
route in terms of distance and time.

Working of A*

A* Algorithm works as-
It maintains a tree of paths originating at the start node.
It extends those paths one edge at a time.
It continues until its termination criterion is satisfied.
A* Algorithm extends the path that minimizes the following function-
f(n) = g(n) + h(n)
'n’ is the last node on the path
g(n) is the cost of the path from start node to node ‘n’

h(n) is a heuristic function that estimates cost of the cheapest path from node ‘n’ to
the goal node

Algorithm for A*

The implementation of A* Algorithm involves
maintaining two lists- OPEN and CLOSED.

OPEN contains those nodes that have been
evaluated by the heuristic function but have not
been expanded into successors yet.

CLOSED contains those nodes that have
already been visited.

Algorithm continued...

Step-01:
Define a list OPEN.
Initially, OPEN consists solely of a single node, the start node S.
Step-02:
If the list is empty, return failure and exit.
Step-03:
Remove node n with the smallest value of f(n) from OPEN and move it to list CLOSED.

If node n is a goal state, return success and exit.
Step-04:
Expand node n.

Algorithm Continued...

Step-05:

If any successor to n is the goal node, return success and the
solution by tracing the path from goal node to S.

Otherwise, go to Step-06.
Step-06:
For each successor node,

Apply the evaluation function f to the node.

If the node has not been in either list, add it to OPEN.
Step-07:

Go back to Step-02.

Problem Example

Step-01:
We start with node A.

Node B and Node F can be reached from node A.
A* Algorithm calculates f(B) and f(F).

Since f(F) < f(B), so it decides to go to node F.

SAC Path-A FYC

@Node G and Node H can be reached from node F.
@A* Algorithm calculates f(G) and f(H).

®

Path-A—>F—>G

Mini-Max algorithm

The Mini-Max algorithm is a decision-making algorithm used in
artificial intelligence, particularly in game theory and computer
games. It is designed to minimize the possible loss in a worst-
case scenario (hence “min”) and maximize the potential
gain (therefore “max”).

In a two-player game, one player is the maximizer, aiming to
maximize their score, while the other is the minimizer, aiming to
minimize the maximizer’s score. The algorithm operates by
evaluating all possible moves for both players, predicting the
opponent’s responses, and choosing the optimal move to ensure
the best possible outcome

Working of Min-Max Process in Al

The Min-Max algorithm is a decision-making process used in artificial intelligence for
two-player games. It involves two players: the maximizer and the minimizer, each
aiming to optimize their own outcomes.

Players Involved
Maximizing Player (Max):
Aims to maximize their score or utility value.

Chooses the move that leads to the highest possible utility value, assuming the
opponent will play optimally.

Working of Min-Max Process in Al

Minimizing Player (Min):
Aims to minimize the maximizer’s score or utility value.
Selects the move that results in the lowest possible utility

value for the maximizer, assuming the opponent will play
optimally.

The interplay between these two players is central to the
Min-Max algorithm, as each player attempts to outthink
and counter the other’s strategies.

Step-by-Step involved in the Mini-Max Algorithm

The Min-Max algorithm involves several key steps, executed recursively
until the optimal move is determined. Here is a step-by-step breakdown:

Step 1: Generate the Game Tree

Objective: Create a tree structure representing all possible moves from
the current game state.

Details: Each node represents a game state, and each edge represents a
possible move.

Step-by-Step involved in the Mini-Max Algorithm

Step 2: Evaluate Terminal States

Objective: Assign utility values to the terminal
nodes of the game tree.

Details: These values represent the outcome
of the game (win, lose, or draw).

Step-by-Step involved in the Mini-Max Algorithm

Step 3: Propagate Utility Values Upwards

Objective: Starting from the terminal nodes,
propagate the utility values upwards through the
tree.

Details: For each non-terminal node:

If it's the maximizing player’s turn, select the maximum
value from the child nodes.

If it's the minimizing player’s turn, select the minimum
value from the child nodes.

Step-by-Step involved in the Mini-Max Algorithm

Step 4: Select Optimal Move

Objective: At the root of the game tree, the
maximizing player selects the move that leads to
the highest utility value.

Min-Max Formula

Maximizing Player’s Turn:
Max(s)=maxaceA(s)Min(Result(s,a))
Here:
Max(s)is the maximum value the maximizing player can achieve from state s.
A(s) is the set of all possible actions from state s.
Result(s,a) is the resulting state from taking action a in state s.
Min(Result(s,a)) is the value for the minimizing player from the resulting state.
Minimizing Player’s Turn:
Min(s)=minaeA(s)Max(Result(s,a))
Here:
Min(s)is the minimum value the minimizing player can achieve from state s.

Min-Max Formula

Terminal States
For terminal states, the utility value is directly assigned:

Utility(s) =
(1 if the maximizing player wins from state s

% 0 if the game is a draw from state s
_—1 if the minimizing player wins from state s

Example of Min-Max in Action
Consider a simplified version of a game where each player can choose between two moves at each

turn. Here's a basic game tree:

Max
g X
Min Min
/\ /\

+1 -1 @ +1

e At the leaf nodes, the utility values are +1, -1, 0, and +1.
e The minimizing player will choose the minimum values from the child nodes: -1 (left subtree) and

O (right subtree).
¢ The maximizing player will then choose the maximum value between -1 and 0, which is O.

Thus, the optimal move for the maximizing player, considering optimal play by the minimizer, leads

to a utility value of 0.

Alpha-Beta Pruning

Alpha-beta pruning is a modified version of the minimax
algorithm. It is an optimization technique for the minimax
algorithm.

As we have seen in the minimax search algorithm that the
number of game states it has to examine are exponential in
depth of the tree. Since we cannot eliminate the exponent, but
we can cut it to half. Hence there is a technique by which without
checking each node of the game tree we can compute the
correct minimax decision, and this technique is called pruning.
This involves two threshold parameter Alpha and beta for future
expansion, so it is called alpha-beta pruning. It is also called
as Alpha-Beta Algorithm.

Alpha-Beta Pruning

Alpha-beta pruning can be applied at any depth of a tree, and
sometimes it not only prune the tree leaves but also entire sub-
tree.

The two-parameter can be defined as:

Alpha: The best (highest-value) choice we have found so
far at any point along the path of Maximizer. The initial
value of alpha is -«.

Beta: The best (lowest-value) choice we have found so
far at any point along the path of Minimizer. The initial
value of beta is +«.

Alpha-Beta Pruning

min maxV (D, G)
G D

* |t is formulated as a minimax game, where:
* The Discriminator is trying to maximize its reward V(D, G)
* The Generator is trying to minimize Discriminator’s reward (or maximize its loss)

V(D,G) = Exppxy[10g D(X)] +|E, g [log(1 — D(G(Z)))]I‘

* The Nash equilibrium of this particular game is achieved at:
* Pyata(x) = Pgen(x) Vx
* D(x) =% Vx

https://www.youtube.com/watch?v=0P-lkZo6fDY

Working of Alpha-Beta Pruning
Example

gl

i) { J

] lilr I‘:I
BEE]D[E

Continued...

Step-1 Step-2

Continued...

Step-4

Step-5

Continued...

Step-6

Step-7

Continued...

Step-8

Step-9

Continued...

Step-10

Step-12

Continued...

Step-13

Step-14

Continued...

Step-15

Step-16

Continued...

Step-17

Step-18

beta pruning

Continued...

Final Step

~ ConstrintSatisfactionProblem

$ CSP examples
{> Backtracking search for CSPs

{> Problem structure and problem decomposition

{> Local search for CSPs

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a problem that requires its solution within some
limitations or conditions also known as constraints. It consists of the following:

A finite set of variables which stores the solution (V={V1,V2,V3,....., Vn})

It is a set of domains where the variables reside. There is a specific domain for each variable.(D
={D1, D2, D3,.....,Dn})

A finite set of constraints (C = {C1, C2, C3,......,Cn})

These are the three main elements of a constraint satisfaction technique. The constraint value consists
of a pair of {scope, rel}. The scope is a tuple of variables which participate in the constraint and rel is a

relation which includes a list of values which the variables can take to satisfy the constraints of the
problem.

Constraint Satisfaction Problem

Start State: the empty assignment i.e all variables are
unassigned.

Goal State: all the variables are assigned values which
satisfy constraints.

Operator: assigns value to any unassigned variable,
provided that it does not conflict with previously assigned
variables.

Ref: Prof Mausam, |IT Delhi, NPTEL Lectures, https://www.youtube.com/watch?v=RD9tUIJRLjA

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a "black box"—any old data structure
that supports goal test, eval, successor

CS5P:

state is defined by variables \', with values from domain /),

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

<L

Northern
Territory
Western
Australia
South
Austraha
New South Wales

WA NT O NSW.V_._SA. T Tas@

|| Example: Map-Coloring

Northern
Territory
Western
Australia
South
Australia

New South Wales

T
Variables WA, NT,Q, NSW,V,SA, T “@
Domains D,- = {J'f'rf. qgreen, hhu'}
Cogf_;traints: adjacent regions must have different colors

Example: Map-Coloring contd.

S

T

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Example: Map-Coloring contd.

Varieties of CSPs

Discrete variables
finite domains; size ¢ = (J(d") complete assignments
<> e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
<> e.g., job scheduling, variables are start/end days for each job
{> need a constraint language, e.g., Start.JJob, + 5 < Start.Jobsy
<> linear constraints solvable, nonlinear undecidable

Continuous variables
<> e.g., start/end times for Hubble Telescope observations
<> linear constraints solvable in poly time by LP methods

Varieties of constraints

Unary constraints involve a single variable,
eg., SA #F green

Binary constraints involve pairs of variables,
eg., SA##WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
— constrained optimization problems

Example: Cryptarithmetic

T
T
O

Cles
v [oNe

+
F

Variables: FT U W R O X, X» X3
Domains: {0.1,2.3.4,5.6,7,.8,9}
Constraints
alldifR F. T, U, W, R,LO)
O+0=R+ 10 - X,, etc.

[Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling

Floorplanning

Standard search formulation (incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
<> Initial state: the empty assignment, { }

<> Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)

> Goal test: the current assignment is complete

1) This is the same for all CSPs! &)
2) Every solution appears at depth » with . variables
= use depth-first search
3) Path is irrelevant, so can also use complete-state formulation

4&9(:: — ()d at depth 7, hence 7:!d" leaves!!!l (=)
..\:E 3

CSP Algorithm
Until a complete solution is found or all paths have a lead to dead ends
{
Select an unexpanded node of the search graph.

Apply the constraint inference rules to the selected node to generate all possible new
constraints.

If the set of constraints contain a contradiction then report that this path is a dead end.
If the set of constraints describe a complete solution, then report success.

If neither a contradiction nor a complete solution has been found, then apply the problem
space rules to generate new partial solutions that are consistent with the current set of
constraints. Insert these partial solutions into the search graph

}
STOP

Backtracking search

Variable assignments are commutative, i.e.,
[” "A=redthen NT = gree n] same as [_\"f‘ = green then 1WA = .r'f'ff]

Only need to consider assignments to a single variable at each node
= b= d and there are (" leaves =

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve ri-queens for 2 = 25

function BACKTRACKING-SEARCH(¢sp) returns a solution, or failure
return BACKTRACK({ }, csp)

function BACKTRACK (assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
var «— SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences «— INFERENCE(csp, var, value)
if inferences # failure then
add inferences to assignment
result «— BACKTRACK (assignment, csp)
if result # failure then
return result

remove {var = value} and inferences from assignment
return failure

Backtracking example

S

Wastern
Australia

Queensland

South
Ausiralia

New South Wales

Tasmania

Backtracking example

P N

¢ ¢ 4

Northern
Territory

South
Australia

New South Wales

Tasmania

Backtracking example

=)

Pt Wi S0
¢ € €
/\
. gm
A

L o

Northemn

Territory
Western Queensiand
Australia
Minimum remaining values Roatrate !
\ — uewSoulhm_l,e:s
Minimum remaining values (MRV): "\ e

choose the variable with the fewest legal values

\l -II._? .._‘\l II: __‘t

Tasmania

Morthern

Territory
rm?a Queensland
| Degree heuristic Roate |
! New South Wal__es
Tie-breaker among MRV variables ' et

Tasmania

Degree heuristic:
choose the variable with the most constraints on remaining variables

R — R~

ﬂ

Given a variable, choose the least constraining value

Western
Least constraining value

Australla

the one that rules out the fewest values in the remaining variables

Allows 1 value for SA
LS~ —E <
‘\ I% Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

MNorthern
Territory

Queensland

South
Australia

Mew South Wales

Tasmania

Westarn
Australla

Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

ok —eh

ErEmrE s mErE s e mEeEmem
]| PEeEmrEErEmrE] "EEmem
1 H[a e m[ms] Emam
| H[es= | | I--‘

Constraint propagation

Forward checking propagates information from assigned to unassigned -
ables, but doesn’t provide early detection for all failures:

\l II:_C *‘11 'P:‘ ,‘\ L
WA NNT Q NSW v SA¢ T
(ErE/ErEErE e E e E/me |
(|| " EEeEEesEEeE] oEjlmem|

1 H{oaoawm E|E>E) H|E» N

NT and S A cannot both be bluel!

Constraint propagation repeatedly enforces constraints locally

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value = of X there is some allowed ¥y

S SSE S

WA NT Q NSW v SA

T

_é//

Arc consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed ¥

SSEA SSEA S

WA NT Q NSW v s

[— | E{oeeis wDxe m| b «_ 1N 1|
{ ——

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Arc consistency algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: c¢sp, a binary CSP with variables { X, X5, ..., X}
local variables: gueue, a queue of arcs, initially all the arcs in csp

while guecue is not empty do
(X, X;)«— REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(X;, X ;) then
for each X, in NEIGHBORS[X] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X ;) returns true iff succeeds
removed «— f[alse
for each # in DoMAIN[X]] do
if no value vy in DOMAIN[X] allows (z,¥) to satisfy the constraint X; «— X;
then delete = from DOMAIN[X;]; removed «— true
return removed

