PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
UNIT-5

Subject Name: Database Management Systems
Subject Code: 20CS3402

SYLLABUS:

Transaction Processing: Introduction, Transaction and System Concepts, Desirable
Properties of Transactions, Characterizing Schedules Based on Recoverability &
Serializability, Transaction Support in SQL.

Introduction to Concurrency Control: Two-Phase Locking Techniques: Types of Locks
and System Lock Tables, Guaranteeing Serializability by Two-Phase Locking.

Introduction to Recovery Protocols: Recovery Concepts, No-UNDO/REDO Recovery Based
on Deferred Update, Recovery Techniques Based on Immediate Update, Shadow Paging.

Part | : Transaction Processing

Introduction to Transaction Processing

Single User Vs Multiuser Systems

e A DBMS system is said to be single user system if at the most one user at a time can
use the system.

e A DBMS system is said to be multiuser system if many users can use the system.

e The access to the database system in multiuser system is concurrently.

e Most of the DBMS systems are based on multi user systems.

e Database systems used in banks, insurance agencies, stock exchanges,
supermarkets, and many other applications are multiuser systems.

Transaction, Database Items, Read and Write Operations and DBMS Buffers

e Definition of Transaction : A transaction can be defined as a group of tasks that
form a single logical unit. For example - Suppose we want to withdraw ¥ 100 from
an account then we will follow following operations :

1) Check account balance

2) If sufficient balance is present request for withdrawal.
3) Get the money

4) Calculate Balance = Balance — 100

5) Update account with new balance.

The above mentioned four steps denote one transaction.

e There are two modes of concurrency -

o Interleaved Processing : Concurrent execution of processes is interleaved in a
single CPU.
o Parallel Processing : Processes are concurrently executed in multiple CPUs.
e Basic transaction processing theory assumes interleaved concurrency.

e A database is a collection of named data items.

e Basic operations on data item A are -

| 1. read_item(X) 2. write_item(X) l

1. read_item(X) : This is a reading operation in which database item named X is read
into a programming variable. We can name the program variable as X for
simplification.

2. write_item(X) : This operation writes the value of program variable X into the
database item which is also named as X.
Basic unit of data transfer from the disk to the computer main memory is one block.

read_item(X) command includes the following steps :
Step 1: Find the address of the disk block that contains item X.

Step 2 : Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

Step 3 : Copy item X from the buffer to the program variable named X.
write_item(X) command includes the following steps :

Step 1: Find the address of the disk block that contains item X.

Step 2 : Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

Step 3 : Copy item X from the program variable named X into its correct location in
the buffer.

Step 4 : Store the updated block from the buffer back to disk.

e Example of sample transaction performing read and write operations
read_item(X);
X=X+M;
Write_item(X);
e Transaction Notations :

The transaction notations focuses on read and write operations. For example -
Following are two transactions denoted by T1 and T2

T1:bLr1(X),wl(X);r1(Y);W1(Y)el;
T2:b2;x2(X);r2(Y),e2

The r and w represents the read and write operations. The bl and b2 represents the
beginning and el and e2 represents ending of transaction.

Why Concurrency Control is Needed ?

e Concurrent execution of transactions over shared database creates several data
integrity and consistency problems - these are,
1) Lost update problem :
This problem occurs when two transactions that access the same database items have
their operations interleaved in a way that makes the value of some database item
incorrect.

For example - Consider following transactions,

1) Salary of employee is read during transaction T,.

2) Salary of employee is read by another transaction T,.

3) During transaction T,, the salary is incremented by ¥ 200
4) During transaction T,, the salary is incremented by T 500

T, T,
This update Read Salary = ¥ 1000
is lost _
e Read Salary = ¥ 1000
e Salary = 2 1200
* Update i
Time Increment
salary by
2200
__| -+ Update Salary =T 1500
________ Increment
Only this -~ 1~ salary by
update is T 500
successful

The result of the above sequence is that the update made by transaction T, is
completely lost. Therefore this problem is called as lost update problem.

2) Dirty read or uncommited read problem or temporary update :

The dirty read is a situation in which one transaction reads the data immediately after

the write operation of previous transaction

T2

% Dirty read

Commit

For example - Consider following transactions,
Assume initially salary is = ¥ 1000.

Time Salary = ¥ 1000
Update
t, Salary = Salary + 200| Salary =¥ 1200
l"’--- ’\
(t3 o 1) Salary = 2 1200

s ®”
Dirty
Read | 1, Rollback Salary =¥ 1000

1) At the time t,, the transaction T, updates the salary to T 1200.

2) This salary is read at time t, by transaction T,. Obviously it is ¥ 1200.

3) But at the time t,, the transaction T, performs rollback by undoing the changes
made by T, and T, at time t, and t,.

4) Thus the salary again becomes = ¥ 1000. This situation leads to Dirty Read or
Uncommited Read because here the read made at time t, (immediately after
update of another transaction) becomes a dirty read.

3) Non-repeatable read problem :

This problem is also known as inconsistent analysis problem. This problem occurs
when a particular transaction sees two different values for the same row within its
lifetime. For example -

T T2
t
Thup ? Read Salary =¥ 1000
Update salary from
Y 21000107 1200 | Salary=¥1200
ty Commit
4| Read Salary =¥ 1200

1) Attime tl, the transaction T1 reads the salary as ¥ 1000.
2) At time t2 the transaction T2 reads the same salary as ¥ 1000 and updates it to ¥1200.

3) Then at time t3, the transaction T2 gets committed.

4) Now when the transaction T1 reads the same salary at time t4, it gets different value
than what it had read at time tl. Now, transaction T1 cannot repeat its reading
operation. Thus inconsistent values are obtained.

Hence the name of this problem is non-repeatable read or inconsistent analysis
problem.

(4) Incorrect read problem :
This is a problem in which one of the transaction makes the changes in the database

system and due to these changes another transaction can not read the data item which it
has read just recently. For example -

T, T,
t =
Timg ! Read Salary = ¥ 1000
i Read Salary =¥ 1000
t3| Delete salary No salary
" Read “Can not find salary"

(1) At time tl, the transaction T1 reads the value of salary as ¥ 1000

(2) Attime t2, the transaction T2 reads the value of the same salary as ¥ 1000

(3) Attime t3, the transaction T1 deletes the variable salary.

(4) Now at time t4, when T2 again reads the salary it gets error. Now transaction T2

can not identify the reason why it is not getting the salary value which is read just few
time back.

This problem occurs due to changes in the database and is called phantom read
problem.
Why Recovery is Needed ?

The important reason why recovery is needed is because some transaction gets failed.
Following are the reasons that indicate why recovery is needed -

1) A computer failure:
o The computer failure means some hardware crash or some software error may
occur.
o During execution of transaction if such computer failure occurs then the
contents of the computer’s internal memory may be lost.
2) A transaction or system error :
o Some operation in the transaction may cause it to fail, such as integer overflow
or division by zero.
o Transaction failure may also occur because of erroneous parameter values or
because of a logical programming error.
3) Local errors or exception conditions detected by the transaction
o Certain conditions occur that cancels the transactions. For example - in
Banking application, if the insufficient balance is found then the transaction
such as ‘withdrawal of money” gets canceled.

4) Concurrency control enforcement
o The concurrency control method may decide to abort the transaction, to be
restarted later, because it violates serializability or because several transactions
are in a state of deadlock.
5) Disk failure
o Sometimes due to read /write head crash disk blocks may lose their data. This
is a severe failure.
6) Physical problems and catastrophes
o It includes various problems such as power failure, fire, overwriting disks or
tapes by mistake, mounting wrong tapes by operator, theft and so on.

Transaction and System Concepts

Q) Explain various states of a transaction execution.

Transaction States

Each transaction has following five states :
1) Active : This is the first state of transaction. For example : Insertion, deletion or
updation of record is done here. But data is not saved to database.

2) Partially committed : When a transaction executes its final operation, it is said to be
in a partially committed state.

oot g)—=(Gommited)
= <>
=

Transaction states

3) Failed : A transaction is said to be in a failed state if any of the checks made by the
database recovery system fails. A failed transaction can no longer proceed further.

4) Aborted : If a transaction is failed to execute, then the database recovery system will
make sure that the database is in its previous consistent state. If not, it brings the
database to consistent state by aborting or rolling back the transaction.

5) Committed : If a transaction executes all its operations successfully, it is said to be
committed. This is the last step of a transaction, if it executes without fail.

*BEGIN_TRANSACTION
*READ or WRITE
*END_TRANSACTION
*COMMIT_TRANSACTION

*ROLLBACK (or ABORT)
Read, Write
Begin H End
transaction N @]@ transaction . P%@@E“&DM* @ E@
Abort Abort

Q) Define a transaction. Discuss the following with relevant examples:

1. Aread only transaction
2. A read write transaction
3. An aborted transaction

Solution : 1) Read only transaction :

2) A read write transaction :

3) An aborted transaction

T1

Read(A)

Read(B)

Display(A — B)

T1

Read(A)

A=A+100

Write(A)

T1 T2
Read(A) Assume A=100
A=A 450 A=150
Write(A)
Read(A) A=150
A=A+100 A=250
RollBack A=100 (restore back to original value which
is before Transaction T1)
Write{A)

The System Log

« To be able to recover from failures that affect transactions, the system maintains a
log to keep track of all transaction operations that affect the values of database
items.

1.[start_transaction, T].

2. [write_item, T, X, old_value, new_value].

3. [read_item, T, X].

4. [commit, T].

5. [abort, T]. Indicates that transaction T has been aborted.

Commit Point of a Transaction

* A transaction T reaches its commit point when all its operations that access the
database have been executed successfully and the effect of all the transaction
operations on the database have been recorded in the log. Beyond the commit point,
the transaction is said to be committed, and its effect must be permanently recorded
in the database.

Q) Discuss ACID properties of a database transaction.

Desirable Properties of Transactions

In a database, each transaction should maintain ACID property to meet the
consistency and integrity of the database.
1) Atomicity :
e This property states that each transaction must be considered as a single unit and
must be completed fully or not completed at all.

e No transaction in the database is left half completed.

e Database should be in a state either before the transaction execution or after the

transaction execution. It should not be in a state ‘executing’.

2)

3)

4)

For example - In above mentioned withdrawal of money transaction all the five
steps must be completed fully or none of the step is completed. Suppose if
transaction gets failed after step 3, then the customer will get the money but the
balance will not be updated accordingly. The state of database should be either at
before ATM withdrawal (i.e customer without withdrawn money) or after ATM
withdrawal (i.e. customer with money and account updated). This will make the
system in consistent state.

Consistency :

¢ The database must remain in consistent state after performing any transaction.

e For example : In ATM withdrawal operation, the balance must be updated
appropriately after performing transaction. Thus the database can be in consistent
state.

Isolation :

¢ In a database system where more than one transaction are being executed
simultaneously and in parallel, the property of isolation states that all the
transactions will be carried out and executed as if it is the only transaction in the
system.

¢ No transaction will affect the existence of any other transaction.
For example : If a bank manager is checking the account balance of particular
customer, then manager should see the balance either before withdrawing the
money or after withdrawing the money. This will make sure that each individual
transaction is completed and any other dependent transaction will get the consistent
data out of it. Any failure to any transaction will not affect other transaction in this
case. Hence it makes all the transactions consistent.

Durability :

¢ The database should be strong enough to handle any system failure.

e If there is any set of insert/update, then it should be able to handle and commit to
the database.

e If there is any failure, the database should be able to recover it to the consistent
state.

For example : In ATM withdrawal example, if the system failure happens after
customer getting the money then the system should be strong enough to update
database with his new balance, after system recovers. For that purpose the system
has to keep the log of each transaction and its failure. So when the system recovers,
it should be able to know when a system has failed and if there is any pending
transaction, then it should be updated to database.

Characterizing Schedules based on Recoverability

The classification of the schedule based on recoverability is -
1. Recoverable Schedule 2. Cascadeless Schedule 3. Strict Schedule

1. Recoverable Schedule : This is a kind of schedule where no transaction needs to be
rolled back.

Definition : A recoverable schedule is one where, for each pair of transactions T, and

T, such that T, reads a data item previously written by T, the commit operation of T,
appears before the commit operation of T, .

For example : Consider following schedule, consider A = 100

T, T,
R(A)
A=A+50
W(A)
R(A)
A=A-20
W(A)
S I Failure
-—
some transaction...
Commit

e The above schedule is inconsistent if failure occurs after the commit of T,.
e It is because T, is dependable transaction on T,. A transaction is said to be
dependable if it contains a dirty read.

e The dirty read is a situation in which one transaction reads the data immediately
after the write operation of previous transaction.

T, T,
R(A)
A=A+50
/v—v—a)——_\ % Dirty read
<: R(A) |
A=A-20
W(A)

Commit

Commit

e Now if the dependable transaction i.e. T2 is committed first and then failure occurs
then if the transaction T1 makes any changes then those changes will not be known
to the T2. This leads to non recoverable state of the schedule.

e To make the schedule recoverable we will apply the rule that - commit the
independent transaction before any dependable transaction.

e In above example independent transaction is T1, hence we must commit it before
the dependable transaction i.e. T2.

e The recoverable schedule will then be -

T T2
R(A)
A=A+50
W(A)
R(A)
A=A-20
W(A)
Commit
Commit

(2) Cascadeless Schedule
e Definition : If in a schedule, a transaction is not allowed to read a data item until
the last transaction that has written that data item is committed or aborted, then
such a schedule is known as a cascadeless schedule.

e The cascadeless schedule allows only committed Read operation. For example :

T1 T2 T3
R(A)
A=A+50
W(A)
Commit
R(A)
A=A-20
W(A)
Commit
R(A)
W(A)

¢ In above schedule at any point if the failure occurs due to commit operation before
every read operation of each transaction, the schedule becomes recoverable and
atomicity can be maintained.
(3) Strict Schedule
e A schedule in which a transaction can neither read or write an item X until the last
transaction that wrote X has committed.

For example
T T2

R(A)

A=A+50

W(A)

Commit
R(A)
A=A-20
W(A)
Commit

Characterizing Schedule based on Serializibility

Concept of Schedule
Schedule is an order of multiple transactions executing in concurrent environment.
Following Fig represents the types of schedules.

Schedule
|
|]
Serial Non serial
[
| |
Serializable Non serializable
|
[]
Conflict View
Types of schedule

Serial schedule : The schedule in which the transactions execute one after the other is
called serial schedule. It is consistent in nature. For example : Consider following two
transactions T1 and T2.

R(A)

W(A)

R(B)

W(B)
R(A)
W(A)
R(B)
W(B)

All the operations of transaction T1 on data items A and then B executes and then in
transaction T2 all the operations on data items A and B execute. The R stands for read
operation and W stands for write operation.

Non serial schedule : The schedule in which operations present within the transaction
are intermixed. This may lead to conflicts in the result or inconsistency in the resultant
data.

For example -
Consider following two transactions,
T T2
R(A)
W(A)
R(A)
W(B)
R(A)
W(B)
R(B)
W(B)

The above transaction is said to be non serial which result in inconsistency or conflicts
in the data.

Serializability of Scheduling

e When multiple transactions run concurrently, then it may lead to inconsistency of
data (i.e. change in the resultant value of data from different transactions).

e Serializability is a concept that helps to identify which non serial schedule and find
the transaction equivalent to serial schedule.

For example :

T1 A B T2
Initial Value 100 100

A=A -10
W(A)
B=B+10
W(B)
9% | 110
A=A-10
W(A)
80 | 110

e In above transactions initially T1 will read the values from database as A=100,

B=100 and modify the values of A and B. But transaction T2 will read the modified
value i.e. 90 and will modify it to 80 and perform write operation. Thus at the end of
transaction T1 value of A will be 90 but at end of transaction T2 value of A will be
80. Thus conflicts or inconsistency occurs here. This sequence can be converted to a
sequence which may give us consistent result. This process is called serializability.

Difference between serial schedule and serializable schedule

Sr. No. Serial schedule Serializable schedule
1 No concurrency is allowed in serial Concurrency is allowed in serializable
schedule. schedule.
2 In serial schedule, if there are two In serializable schedule, if there are two

transactions executing at the same time and | transactions executing at the same time
no interleaving of operations is permitted, | and interleaving of operations is

then following can be the possibilities of allowed there can be different possible
execution - orders of executing an individual

i) E te all the ions of tr. . operation of the transactions.

T, in a sequence and then execute all the
operations of transactions T, in a sequence.

ii) Execute all the operations of transactions
T, in a sequence and then execute all the
operations of transactions T, in a sequence.

Example of serial schedule Example of serializable schedule
T, T T T,
Read(A) Read(A)
A=A-50 A=A-50
Write(A) Write(A)
Read(B) Read(B)
B=B+100 B=B+100
Write(B) Write(B)
Read(A) Read(B)
A=A+10 Write(B)
Write(A)

e There are two types of serializabilities : Conflict serializability and view
serializability.

Conflict Serializability

Definition : Suppose T, and T, are two transactions and I, and I, are the instructions in
T, and T, respectively. Then these two transactions are said to be conflict serializable, if

both the instruction access the data item d, and at least one of the instruction is write
operation.

What is conflict ? : In the definition three conditions are specified for a conflict in

conflict serializability -

1) There should be different transactions

2) The operations must be performed on same data items

3) One of the operation must be the Write (W) operation.

e We can test a given schedule for conflict serializability by constructing a precedence
graph for the schedule, and by searching for absence of cycles in the graph.

Predence graph is a directed graph, consisting of G = (V,E) where V is set of vertices
and E is set of edges. The set of vertices consists of all the transactions participating
in the schedule. The set of edges consists of all edges T, — T, for which one of three

conditions holds :

1. T, executes write(Q) before 'I'i executes read(Q).

2. T, executes read(Q) before T, executes write(Q).

3. T, executes write(Q) before Ti executes write(Q).

A serializability order of the transactions can be obtained by finding a linear order
consistent with the partial order of the precedence graph. This process is called
topological sorting.

Testing for serializability

Following method is used for testing the serializability : To test the conflict
serializability we can draw a graph G = (V, E) where V = vertices which represent the
number of transactions.

E = edges for conflicting pairs.
Step 1: Create a node for each transaction.

Step 2 : Find the conflicting pairs (RW, WR, WW) on the same variable (or data item)
by different transactions.
Step 3 : Draw edge for the given schedule. Consider following cases

1. T; executes write(Q) before T, executes read(Q), then draw edge from T; to T,.

2. T, executes read(Q) before T, executes write(Q) , then draw edge fromT; to T,

3. T, executes write(Q)befomT. executes write(Q), , then draw edge from T, toT,
Step 4 : Now, if precedence graph is cyclic then it is a non conflict serializable schedule
and if the precedence graph is acyclic then it is conflict serializable schedule.

Q) Check weather following schedule is conflict serializable or not conflict serializable
then find the serializability order.

Solution :
Step 1: We will read from top to bottom, and build a precedence graph for conflicting
entries :

Step 2 : As there is no cycle in the precedence graph, the given sequence is conflict
serializable. Hence we can convert this non serial schedule to serial schedule. For that
purpose we will follow these steps to find the serializable order.

Step 3 : A serializability order of the transactions can be obtained by finding a linear
order consistent with the partial order of the precedence graph. This process is called
topological sorting.

Step 4 : Find the vertex which has no incoming edge which is T1. Finally find the
vertex having no outgoing edge which is T2. So in between them is T3. Hence the order
willbe T1 = T3 =T2.

Q) Consider the three transactions T1, T2 and T3 and schedules S1 and S2 given below.

Determine whether each schedule is serializable or not? If a schedule is serializable
write down the equivalent serial schedule(S).

T1: R1(x) R1(z);W1(x);

T2: R2A(x);R2(y);W2(z);W2(y)

T3:R3(x);R3(y);W3(y);

S1: R1(x);R2(z);R1(z);R3(x);R3(y);W1(x);W3(y);R2(y);W2(z);W2(y);
52: R1(x);R2(z);R3(x);R1(z);R2(y);R3(y);W1(x);W2(z);W3(y);W2(y);

Solution : Step 1: We will represent the schedule S1 as follows

T1 T2 T3
R1(x)
R2(z)
R1(z)
R3(x)
R3(y)
W1(x)
Wi(y)
R2(y)
W2(z)
W2(y)

Step (a) : We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -

i) Both the operations belong to different transactions.

ii) Both the operations are on same data item.

iii) At least one of the two operations is a write operation

The conflicting entries are as follows -

™ T2 T3
R1(x)
R2(z)
R1(2)
/— R3(x)
/ R3(y)
Wi(x)
Wily)
R2(y)’(
W2(z)
W2(y)

Step (b) : Now we will draw precedence graph as follows -

As there is no cycle in the precedence graph, the given sequence is conflict
serializable. Hence we can convert this non serial schedule to serial schedule. For that
purpose we will follow these steps to find the serializable order.

Step (c) : A serializability order of the transactions can be obtained by finding a
linear order consistent with the partial order of the precedence graph. This process is
called topological sorting.

Step (d) : Find the vertex which has no incoming edge which is T3. Finally find the
vertex having no outgoing edge which is T2. So in between them is T1. Hence the order
will be T3- T1-T2

Step 2: We will represent the schedule S2 as follows -

T1 T2 T3
R1(x)
R2(2)
R3(x)
R1(z)
R2(y)
R3(y)
W1(x)
W2(z)
Wi(y)
W2(y)

We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -

i) Both the operations belong to different transactions.
ii) Both the operations are on same data item.
iii) At least one of the two operations is a write operation

The conflicting entries are as follows -

T T2 T3
R1(x)
R2(z)
R3(x)
R1(z) 1
R2(y)
/| Raly)
Wix)=t"
W2(z)
!/W:’(V)
W2(y)

Step (b) : Now we will draw precedence graph as follows -

As there is no cycle in the precedence graph, the given sequence is conflict
serializable. Hence we can convert this non serial schedule to serial schedule. For that
purpose we will follow these steps to find the serializable order.

Step (c) : A serializability order of the transactions can be obtained by finding a
linear order consistent with the partial order of the precedence graph. This process is
called topological sorting.

Step (d) : Find the vertex which has no incoming edge which is T3. Finally find the
vertex having no outgoing edge which is T2. So in between them is T1. Hence the order

will be T3- T1-T2
View Serializability

e If a given schedule is found to be view equivalent to some serial schedule, then it is
called as a view serializable schedule.
e View Equivalent Schedule : Consider two schedules S1 and S2 consisting of

transactions T1 and T2 respectively, then schedules S1 and S2 are said to be view

equivalent schedule if it satisfies following three conditions :

o If transaction T1 reads a data item A from the database initially in schedule S2,
then in schedule S2 also, T1 must perform the initial read of the data item X
from the database. This is same for all the data items. In other words - the
initial reads must be same for all data items.

o If data item A has been updated at last by transaction Ti in schedule S1, then in
schedule S2 also, the data item A must be updated at last by transaction Ti.

o If transaction Ti reads a data item that has been updated by the transaction Tj
in schedule S1, then in schedule S2 also, transaction Ti must read the same data
item that has been updated by transaction Tj. In other words the Write-Read
sequence must be same.

Steps to check whether the given schedule is view serializable or not

Step 1 : If the schedule is conflict serializable then it is surely view serializable
because conflict serializability is a restricted form of view serializability.

Step 2 : If it is not conflict serializable schedule then check whether there exist any
blind write operation. The blind write operation is a write operation without reading a
value. If there does not exist any blind write then that means the given schedule is not
view serializable. In other words if a blind write exists then that means schedule may or
may not be view conflict.

Step 3: Find the view equivalence schedule

Q) Consider the following schedules for checking if these are view serializable or not.

T T2 T3
W)
R(A)
W(B) R(B)
R(C)
W(B)
W(B)

Solution :
i) The initial read operation is performed by T, on data item A or by T, on data item C.
Hence we will begin with T, or T,. We will choose T, at the beginning.
ii) The final write is performed by T, on the same data item B. Hence T, will be at the
last position.
iii) The data item C is written by T, and then it is read by T,. Hence T, should appear
before T,. Thus we get the order of schedule of view serializability as T,=T, =T,

Q) Consider the following schedules. The actions are listed in the order they
are scheduled, and prefixed with the transaction name.
$,:T;:R(X), T,:R(X), T,:W(Y), T,:W(Y) T,:R(Y), T,:R(Y)
Sz M T3 M W(X), T‘ 4 R(X), Tl ¥ W(Y)' TZ 2 R‘ Z)p Tz ~ W(Z) T3 4 R(Z)

For each of the schedules, answer the following questions:

I. What is the precedence graph for the schedule?

ii. Isthe schedule conflict serializable? If so, what are all the conflict equivalent
serial schedules?

iii. Isthe schedule view serializable? If so, what are all the view equivalent
serial schedules?

Solution : (i) We will find conflicting operations. Two operations are called as conflicting
operations if all the following conditions hold true for them -
« Both the operations belong to different transactions.
« Both the operations are on same data item.
o At least one of the two operations is a write operation
For S, : From above given example in the top to bottom scanning we find the conflict
as
o T,:W(Y), T,: W(Y) and
o T,:W(Y),T,:R(Y)
Hence we will build the precedence graph. Draw the edge between conflicting

transactions. For example in above given scenario, the conflict occurs while moving from
T,: W(Y) to T,:W(Y). Hence edge must be from T, to T,. Similarly for second conflict, there

will be the edge from T, to T,.
B

Precedence graph for S,

For S, : The conflicts are
o T,:W(X), T,:R(X)
o T,:W(Z) T,:R(Z)

Hence the precedence graph is as follows -

Precedence graph for S,

(i)
o S, is not conflict-serializable since the dependency graph has a cycle.

o S, is conflict-serializable as the dependency graph is acylic. The order T,-T,-T,
is the only equivalent serial order.

(iif)
S, is not view serializable.

S, is trivially view-serializable as it is conflict serializable. The only serial order
allowed is T,-T,-T,.

Transaction Support in SQL

e Using SQL statements various transactions occur with database systems.

¢ A Single SQL statement is always atomic.

e With SQL there is no explicit Begin Transaction statement. The transaction
initiation is done implicitly when particular SQL statements are encountered.

e Every transaction must have explicit End statement. It can be wither COMMIT or
ROLLBACK.
e Every transaction must have certain characteristics which are specified using SET
TRANSACTION statement in SQL.
e Three characteristics are - 1. Access Mode 2. Diagnostic Area Size and 3. Isolation
Level
(1) Access Mode :
o InSQL, the access mode can be specified as READ ONLY or READ WRITE.
o The default is READ WRITE unless the isolation level of READ UNCOMITTED
is specified, in which case READ ONLY is assumed.
(2) Diagnostic Area Size
o The diagnostic area size n, specifies an integer value n, indicating the number
of conditions that can be held simultaneously in the diagnostic area.
(3) Isolation Level
o The transaction should take place in a system in such a way that it is the only
transaction that is accessing the resources in a database system at particular
instance.
o Isolation levels defines the degree to which a transaction must be isolated from
the data modifications made by any other transaction in the database system.
o The isolation level is denoted as <isolation>. There are four levels of transaction
isolation defined by SQL -

(i) Serializable :

* This is the highest isolation level.

* Serializable execution is defined to be an execution of operations in which
concurrently executing transactions appears to be serially executing.

* This is a default isolation level.

(ii) Repeatable Read :

This is the most restrictive isolation level.
The transaction holds read locks on all rows it references.
It holds write locks on all rows it inserts, updates, or deletes.

Since other transaction cannot read, update or delete these rows, it avoids
non repeatable read.

(iii) Read Committed :

This isolation level allows only committed data to be read.

Thus it does not allows dirty read (i.e. one transaction reading of data
immediately after written by another transaction).

The transaction hold a read or write lock on the current row, and thus
prevent other rows from reading, updating or deleting it.

(iv) Read Uncommitted :

It is lowest isolation level.

In this level, one transaction may read not yet committed changes made by
other transaction.

This level allows dirty reads.

In this level transactions are not isolated from each other.

o The potential problems with lower isolation level are -

1)

2)

3)

Dirty Read : The dirty read is a situation in which one transaction reads
the data immediately after the write operation of previous transaction.
Non Repeatable Read : Allowing another transaction to write a new value
between multiple reads of one transaction is called non repeatable read.
Phantoms : This is a problem in which one of the transaction makes the
changes in the database system and due to these changes another
transaction can not read the data item which it has read just recently.

o Possible violation of serializability

Isolation Level

Type of Problems

Dirty Read | Non-repeatable Read Phantoms
READ UNCOMMITTED Yes Yes Yes
READ COMMITED No Yes Yes
REPEATABL READ No No Yes
SERIALIZABLE No No No

Part Il : Concurrency Control in Databases

Concurrency Control

One of the fundamental properties of a transaction is isolation.

When several transactions execute concurrently in the database, however, the
isolation property may no longer be preserved.

A database can have multiple transactions running at the same time. This is called
concurrency.

To preserve the isolation property, the system must control the interaction among
the concurrent transactions; this control is achieved through one of a variety of
mechanisms called concurrency control schemes.

Definition of concurrency control : A mechanism which ensures that simultaneous
execution of more than one transactions does not lead to any database
inconsistencies is called concurrency control mechanism.

The concurrency control can be achieved with the help of various protocols such as
- Lock based protocol, deadlock handling, multiple granularity, timestamp based
protocol, and validation based protocols.

Definition of concurrency control : A mechanism which ensures that simultaneous
execution of more than one transactions does not lead to any database
inconsistencies is called concurrency control mechanism.

The concurrency control can be achieved with the help of various protocols such as

- Lock based protocol, deadlock handling, multiple granularity, timestamp based
protocol, and validation based protocols.

Two Phase Locking Techniques for Concurrency Control

Why Do We Need Lock ?

One of the method to ensure the isolation property in transactions is to require that
data items be accessed in a mutually exclusive manner. That means, while one
transaction is accessing a data item, no other transaction can modify that data item.
The most common method used to implement this requirement is to allow a
transaction to access a data item only if it is currently holding a lock on that item.
Thus the lock on the operation is required to ensure the isolation of transaction.

Working of Lock

Concept of protocol : The lock based protocol is a mechanism in which there is
exclusive use of locks on the data item for current transaction.

Types of locks : There are two types of locks used —
Lock

Exclusive lock

i) Shared lock : The shared lock is used for reading data items only. It is denoted by

Lock-S. This is also called as read lock.

ii) Exclusive lock : The exclusive lock is used for both read and write operations. It is

denoted as Lock-X. This is also called as write lock.

The compatibility matrix is used while working on set of locks. The concurrency
control manager checks the compatibility matrix before granting the lock. If the two
modes of transactions are compatible to each other then only the lock will be
granted.

In a set of locks may consists of shared or exclusive locks. Following matrix
represents the compatibility between modes of locks.

s | x

s | T | F

X | F | F
Compatibility matrix for locks

Here T stands for True and F stands for False. If the control manager get the

compatibility mode as True then it grant the lock otherwise the lock will be denied.

1)

For example : If the transaction T, is holding a shared lock in data item A, then the
control manager can grant the shared lock to transaction T, as compatibility is True.
But it cannot grant the exclusive lock as the compatibility is false. In simple words if
transaction T, is reading a data item A then same data item A can be read by
another transaction T, but cannot be written by another transaction.

Similarly if an exclusive lock (i.e. lock for read and write operations) is hold on the
data item in some transaction then no other transaction can acquire shared or
exclusive lock as the compatibility function denotes F. That means of some
transaction is writing a data item A then another transaction can not read or write
that data item A.

Hence the rule of thumb is

Any number of transactions can hold shared lock on an item.

ii) But exclusive lock can be hold by only one transaction.

Example of a schedule denoting shared and exclusive locks : Consider following
schedule in which initially A=100. We deduct 50 from A in T1 transaction and Read
the data item A in transaction T2. The scenario can be represented with the help of
locks and concurrency control manager as follows :

Ty T, Concurrency control manager
Lock-X(A)
Grant X(A,T,) because in T,
there is write operation.
Exclusive lock R(A)
A=A - 50
WIA)
Unlock(A)
Lock-S(A)
Grant S(A,T,) because in T, there is
Shared lock read operaion
R(A)
Unlock(A)
Two Phase Locking Protocol

¢ The two phase locking is a protocol in which there are two phases :
i) Growing phase (Locking phase) : It is a phase in which the transaction may
obtain locks but does not release any lock.
ii) Shrinking phase (Unlocking phase) : It is a phase in which the transaction may
release the locks but does not obtain any new lock.
e Lock Point : The last lock position or first unlock position is called lock point.

e For example -

|
Lock(A) : Lock point
'
Lock(B) : e
Lock(C ' get Locks are
(€) : . e
> (Growing (Shrinking
Lock ! phese) phase)
Point }
css 1
1
Unlock(A) ; Transaction ’—‘J _—Transadion
' begins ends
Unlock(B) :

Unlock(C)

Consider following transactions

T, T,
Lock-X(A) Lock-S(B)
Read(A) Read(B)

A=A-50 Unlock-S(B)
Write(A)
Lock-X(B)
Unlock-X(A)
B=B+100 Lock-S(A)
Write(B) Read(A)
Unlock-X(B) Unlock-S(A)

The important rule for being a two phase locking is - All lock operations precede all

the unlock operations.
In above transactions T, is in two phase locking mode but transaction T, is not in two

phase locking. Because in T, the shared lock is acquired by data item B, then data item B
is read and then the lock is released. Again the lock is acquired by data item A , then the
data item A is read and the lock is then released. Thus we get lock-unlock-lock-unlock
sequence. Clearly this is not possible in two phase locking.
Q) Prove that two phase locking guarantees serializability.
Solution:

e Serializability is mainly an issue of handling write operation. Because any

inconsistency may only be created by write operation.
e Multiple reads on a database item can happen parallely.

e 2-Phase locking protocol restricts this unwanted read/write by applying exclusive

lock.
e Moreover, when there is an exclusive lock on an item it will only be released in

shrinking phase. Due to this restriction there is no chance of getting any

inconsistent state.
The serializability using two phase locking can be understood with the help of

following example :

Consider two transactions

T, y A
R(A)
R(A)
R(B)
W(B)

Step 1: Now we will apply two phase locking. That means we will apply locks in
growing and shrinking phase

T, T,
Lock-S(A)
R(A)
Lock-S(A)
R(A)
Lock-X(B)
R(B)
W(B)
Unlock-X(B)
Unlock-S(A)

Note that above schedule is serializable as it prevents interference between two
transactions.

The serializability order can be obtained based on the lock point. The lock point is
either last lock operation position or first unlock position in the transaction.
The last lock position is in T,, then it is in T,. Hence the serializability will be T,->T,
based on lock points. Hence The serializability sequence can be R,(A);R,(A);R,(B);W, (B)
Advantages of two phase locking
(1) It ensures serializability.

Disadvantages of two phase locking protocol
(1) It leads to dealocks.

(2) It leads to cascading rollback.

Problems in two phase locking
The two phase locking protocol leads to two problems - Deadlock and cascading roll

back.

1) Deadlock : The deadlock problem can not be solved by two phase locking.
Deadlock is a situation in which when two or more transactions have got a lock and
waiting for another locks currently held by one of the other transactions.

For example

2) Cascading Rollback : Cascading rollback is a situation in which

, &
Lock-X(A) Lock-X(B)
Read(A) Read(B)
A=A-50 B=B+100
Write(A) Write(B)
7’ a - - -~ . ~

7’
/

/

Delayed, wait '

! for T, to \
. release Lock I
I/
\ on A
/
\ 7
\\ . 7

a single

transaction failure leads to a series of transaction rollback. For example -

T, S T,

Read(A)
Read(B)
C=A+B
Write(C)

Read(C)

Write(C)

Read(C)

When T, writes value of C then only T, can read it. And when T, writes the value of C
then only transaction T, can read it. But if the transaction T, gets failed then automatically
transactions T, and T, gets failed.

The simple two phase locking does not solve the cascading rollback problem. To
solve the problem of cascading Rollback two types of two phase locking mechanisms can
be used.

Types of Two Phase Locking
1) Strict two phase locking : The strict 2PL protocol is a basic two phase protocol but
all the exclusive mode locks be held until the transaction commits. That means in

other words all the exclusive locks are unlocked only after the transaction is
committed. That also means that if T, has exclusive lock, then T, will release the

exclusive lock only after commit operation, then only other transaction is allowed to
read or write. For example - Consider two transactions

o T,

W(A)

R(A)

If we apply the locks then
T,
Lock-X(A)
W(A)
Commit
Unlock(A)
Lock-S(A)
R(A)
Unlock-S(A)

Thus only after commit operation in T, we can unlock the exclusive lock. This ensures
the strict serializability.

Thus compared to basic two phase locking protocol, the advantage of strict 2PL
protocol is it ensures strict serializability.

2) Rigorous two phase locking : This is stricter two phase locking protocol. Here all
locks are to be held until the transaction commits. The transactions can be
seriealized in the order in which they commit.

Example - Consider transactions

T

'
R(A)
R(B)
W(B)

If we apply the locks then

T,

Lock-S(A)

R(A)

Lock-X(B)

R(B)

W(B)

Commit

Unlock(A)

Unlock(B)

Thus the above transaction uses rigorous two phase locking mechanism.
Q) Consider the following two transactions:

T, : read(A)Read(B);

If A=0 then B=B+1;

Write(B)

T,: read(B); read(A)

If B=0 then A=A+1

Write(A)
Add lock and unlock instructions to transactions T, and T,, so that they observe two phase
locking protocol. Can the execution of these transactions result in deadlock ?

Solution:
T, T,

Lock-S(A) Lock-5(B)
Read(A) Read(B)
Lock-X(B) Lock-X(A)
Read(B) Read(A)
if A=0 then B=B+1 if B=0) then A=A+1
Write(B) Write(A)
Unlock(A) Unlock(B)
Commit Commit
Unlock(B) Unlock(A)

This is lock-unlock instruction sequence help to satisfy the requirements for strict two
phase locking for the given transactions.

The execution of these transactions result in deadlock. Consider following partial
execution scenario which leads to deadlock.

T T,
Lock-S(A) Lock-S(B)
Read(A) Read(B)
Lock-X(B) Lock-X(A)

Now it will wait for T, to
release exclusive lock on A

Now it will wait for T, to
release exclusive lock on B

Part lll : Introduction to Database Recovery Protocol

Recovery Concepts

Purpose of Database Recovery

e The purpose of recovery is to bring the database into the last consistent stage prior
to occurrence of failure.

¢ The recovery must preserve all the ACID properties of transaction. The ACID
properties are - Atomicity, consistency, isolation and durability.

¢ Thus recovery ensures high availability of the database for transaction purpose.

e For example - If the system crashes before the amount transfer from one account to

another then either one or both the accounts may have incorrect values. Here the
database must be recovered before the modification takes place.

Types of Failure

There are three types of failures that occur commonly -

1) Transaction failure : Transactions may fail because of incorrect input, deadlock,
incorrect synchronization.

2) System failure : System may fail because of addressing error, application error,
operating system fault, RAM failure, etc.

3) Media failure : Disk head crash, power disruption, etc.

Transaction Log

e For recovery from any type of failure data values prior to modification (BFIM -
BeFore Image) and the new value after modification (AFIM - AFter Image) are
required. These values and other information is stored in a sequential file called
Transaction log.

e Log is the most commonly used structure for recording the modifications that as to
be made in the actual database. Hence during the recovery procedure a log file is
maintained.

e A log record maintains four types of operations. Depending upon the type of
operations there are four types of log records-

1. <Start> Log record : It is represented as <T, Start>

2. <Update> Log record
3. <Commit> Log record : It is represented as
<T, Commit>

4. <Abort> Log record : It is represented as
<Ti, Abort>

e The log contains various fields as shown in following figure. This structure is for

<update> operation
Transaction | Data ltem | Old Value of | New Value
ID(T) Name Data Item of Data
Item

e For example : The sample log file is

<T,, Start Here 10 represents the old value
before commit operation and 20

<T,2,1020> * is the new value that needs to be

<T,, Commit> updated in the database after
commit operation

The log must be maintained on the stable storage and the entries in the log file are
maintained before actually updating the physical database.

Concept of Data Caching
e Data items to be modified are first stored into database cache by the Cache Manager
(CM) and after modification they are flushed (written) to the disk.
e The writing to the disk is controlled by Modified and Pin-Unpin bits.
* Pin-Unpin : Instructs the operating system not to flush the data item.
* Modified : Indicates the AFIM of the data item.

Data Update

The data can be updated using four ways. These are,

1) Immediate Update : In this method, as soon as the data is modified in cache, the
data is updated on the disk also.

2) Deferred Update : All modified data items in the cache is written either after a
transaction ends its execution or after a fixed number of transactions have
completed their execution.

3) Shadow Update : The modified data items of cache are not overwritten to the disk,
but a separate copy of modified data items is maintained at different location on the
disk.

4) In-place Update : The disk version of the data item is overwritten by the cache
version.
UNDO/REDO(Roll-back/Roll-forward)
During transaction execution, the updates are recorded only in the log and in the cache
buffers. After the transaction reaches its commit point and the log is force written to disk

and the updates are recorded in the database.
In order to maintain the atomicity of transaction, the operations can be redone or

undone.

UNDO : This is an operation in which we restore all the old values (BFIM - BeFore
Modification Image) onto the disk. This is called roll-back operation.

REDO : This is an operation in which all the modified values(AFIM - AFter
Modification Image) are restored onto the disk. This is called roll-forward operation.

These operations are recorded in the log as they happen.
Difference between UNDO and REDO

Sr. No. UNDO REDO
18 Makes a change go away. Reproduces a change.
y Used for rollback and read consistency. Used for rolling forward the changes.
3. Protects the database from inconsistent reads. | Protects from data loss.

Steal/No-steal and Force/No-force

There are possible ways for flushing database cache to database disk :

1. Steal : Cache can be flushed before transaction commits.

2. No-Steal : Cache cannot be flushed before transaction commit.

3. Force : Cache is immediately flushed (forced) to disk.

4. No-Force : Cache is deferred until transaction commits.

Write Ahead Logging

e Before a block of data in main memory is output to the database, all log records

pertaining to data in that block must have been output to stable storage. This rule is
called the write-ahead logging.

e This rule is necessary because - In the event of a crash or ROLLBACK, the original
content contained in the rollback journal is played back into the database file to
revert the database file to its original state.

Check-pointing

e Checkpoint is a mechanism where all the previous logs are removed from the
system and stored permanently in a storage disk.

e Checkpoint declares a point before which the DBMS was in consistent state, and all
the transactions were committed.

e The recovery system reads the logs backwards from the end to the last checkpoint.

e Performing a checkpoint consists of the following operations :
o Suspending executions of transactions temporarily;
o Writing (force-writing) all modified database buffers of committed transactions
out to disk;
o Writing a checkpoint record to the log; and
Writing (force-writing) all log records in main memory out to disk.

e A checkpoint record usually contains additional information, including a list of
transactions active at the time of the checkpoint.

e Many recovery methods (including the deferred and immediate update methods)
need this information when a transaction is rolled back, as all transactions active at
the time of the checkpoint and any subsequent ones may need to be redone.

® Since checkpoints cause some loss in performance while they are being taken, their
frequency should be reduced if fast recovery is not critical.

e If we need fast recovery check-pointing frequency should be increased. If the
amount of stable storage available is less, frequent check-pointing is unavoidable.

NO-UNDO/REDO Recovery based on Deferred Update

1. Deferred Database Modification :

¢ In this technique, the database is not updated immediately.

¢ Only log file is updated on each transaction.

e When the transaction reaches to its commit point, then only the database is

physically updated from the log file.
¢ In this technique, if a transaction fails before reaching to its commit point, it will not
have changed database anyway. Hence there is no need for the UNDO operation.

The REDO operation is required to record the operations from log file to physical

database. Hence deferred database modification technique is also called as NO

UNDO/REDO algorithm.

i) UNDO (T) : The transaction T, needs to be undone if the log contains <T Start>
but does not contain <T,_ Commit>. In this phase, it restores the values of all
data items updated by T, to the old values.

ii) REDO (T) : The transaction Ti needs to be redone if the log contains both
<T,Start> and <T,Commit>. In this phase, the data item values are set to the
new values as per the transaction. After a failure has occurred log record is
consulted to determine which transaction need to be redone.

e Forexample:
Consider two transactions T, and T, as follows :

3 3

Read (A, a) | Read (C,)
a=a-10 c=c-20
Write (A, a) | Write (C, ¢)
Read (B, b)
b=b+10
Write (B, b)

If T, and T, are executed serially with initial values of A =100, B = 200 and C = 300,
then the state of log and database if crash occurs

a) Just after write (B, b)

b) Just after write (C, ¢)

¢) Justafter <T, commit>

The result of above three scenarios is as follows :

Initially the log and database will be,

Log Database
<T,, Start>
<T, A, 90>
<T, B, 210>
<T,, Commit>
A=9
B =210
<T,, Start>
<T,, C, 280>
<T,, Commit>
C=280

a) Just after write (B, b)
e Just after write operation, no commit record appears in log. Hence no write
operation is performed on database. So database retains only old values. Hence A =
100 and B = 200 respectively.
e Thus the system comes back to original position and no redo operation take place.
e The incomplete transaction of T, can be deleted from log.
b) Just after write (C, c)
e The state of log records is as follows :
¢ Note that crash occurs before T, commits. At this point T, is completed successfully,
so new values of A and B are written from log to database. But as T, is not
committed, there is no redo (T,) and the incomplete transaction T, can be deleted
from log.
e The redo (T,) is done as < T,, commit> gets executed. Therefore A =90, B = 210 and
C = 300 are the values for database.

c) Just after < T,, commit>

The log records are as follows :

<T,, Start>

<T,, A, 90>

<T,, B, 210>

<T,, Commit>

<T,, Start>

<T,,6, 280>

<T,, Commit>

¢———Crash occurs here

Clearly both T, and T, reached at commit point and then crash occurs. So both redo
(T,) and redo (T,) are done and updated values will be A =90, B = 210, C = 280.
Recovery Technique based on Immediate Update

In this technique, the database is updated during the execution of transaction even
before it reaches to its commit point.

If the transaction gets failed before it reaches to its commit point, then the ROLLBACK
Operation needs to be done to bring the database to its earlier consistent state. That

means the effects of operations need to be undone on the database. For that purpose both

Redo and Undo operations are both required during the recovery. This technique is
known as UNDO/ REDO technique.

For example : Consider two transaction T, and T, as follows :

y T,
Read(Aa) Read(C, ¢)
a=a-10 c=c-2
Write(A, a) Write(C, ¢)
Read(B, b)
b=b+10
Write(B, b)

Here T, and T, are executed serially. Initially A =100,B = 200 and C = 300.
If the crash occurs

i) Just after Write(B, b) ii) Just after Write(C, ¢)

iii) Just after <T,, Commit>

Then using the immediate database modification approach the result of above three
scenarios can be elaborated as follows :

The contents of log and database is as follows :

Log Database
<T, Start>
<T,,A,100,90>
A=9
<T,,B,200,210>
B=210
<T, Commit>
<T,Start>
<T,,C,300,280>
C=280
<T,,Commit>

The recovery scheme uses two recovery techniques -

i) UNDO (T) :The transaction T, needs to be undone if the log contains <T,Start> but
does not contain <T,Commit>. In this phase, it restores the values of all data items
updated by T, to the old values.

ii) REDO (T) : The transaction T, needs to be redone if the log contains both <T, Start>
and <T,Commit>. In this phase, the data item values are set to the new values as
per the transaction. After a failure has occurred log record is consulted to determine
which transaction need to be redone.

a) Just after Write (B, b) : When system comes back from this crash, it sees that there
is
<T,, Start> but no <T,, Commit>. Hence T, must be undone. That means old values

of A and B are restored. Thus old values of A and B are taken from log and both the
transaction T, and T, are re-executed.

b) Just after Write (C, ¢) : Here both the redo and undo operations will occur.

¢) Undo : When system comes back from this crash, it sees that there is <T,, Start> but
no <T,, Commit>. Hence T, must be undone. That means old values of C is
restored.
Thus old value of C is taken from log and the transaction T, is re-executed.

d) Redo : The transaction T, must be done as log contains both the <T,, Start> and
<T,, Commit>
So A=90,B=210and C =300

e) Just after <T,, Commit> : When the system comes back from this crash, it sees that
there are two transaction T, and T, with both start and commit points. That means
T, and T, need to be redone. So A =90, B = 210 and C = 280.

Shadow Paging
e Shadow paging is a recovery scheme in which database is considered to be made up

of number of fixed size disk pages.
e A directory or a page table is constructed with n number of pages where each i
page points to the i** database page on the disk.

Database disk Shadow
Current directory blocks (pages) directory
1 page 6 (old) .- . 1
2 =| page2 - -
3 L l—. page 4 I 3
4 — page 3 (old) ° :
6
6 *| page5 e
7 *| page 3 (new) 1
N Not
8 page 6 (new) updated
After updating
pages 3 and 6
Demonstration of Shadow Paging

e The directory can be kept in the main memory.

e When a transaction begins executing, the current directory-whose entries point to
the most recent or current database pages on disk-is copied into a another directory
called shadow directory.

The shadow directory is then saved on disk while the current directory is used by

the transaction.

During the execution of transaction, the shadow directory is never modified.

When a write operation is to be performed then the new copy of modified database
page is created but the old copy of database page is never overwritten. This newly

created database page is written somewhere else.
e The current directory will point to newly modified web page and the shadow page

directory will point to the old web page entries of database disk.
When the failure occurs then the modified database pages and current directory is

discarded.
The state of database before the failure occurs is now available through the shadow

directory and this state can be recovered using shadow directory pages.
This technique does not require any UNDO/REDO operation.

