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  MEMORY MANAGEMENT STRATEGIES 

1. Introduction 

 A typical instruction-execution cycle, for example, first fetches an instruction from 

memory. The instruction is then decoded and may cause operands to be fetched from 

memory. After the instruction has been executed on the operands, results may be stored 

back in memory.  

 The memory unit sees only a stream of memory addresses; it does not know how they are 

generated (by the instruction counter, indexing, indirection, literal addresses, and so on) or 

what they are for (instructions or data). Accordingly, we can ignore how a program 

generates a memory address.

1.1. Basic Hardware 

 For proper system operation we must protect the operating system from access by user 

processes.  

 We first need to make sure that each process has a separate memory space. To separate 

memory spaces, we need the ability to determine the range of legal addresses that the 

process may access and to ensure that the process can access only these legal addresses. 

 We can provide this protection by using two registers, usually a base and limit.  

 The base register holds the smallest legal physical memory address; the limit register 

specifies the size of the range. 

 For example, if the base register holds 300040 and the limit register is 120900, then the 

program can legally access all addresses from 300040 through 420939. 

 

 CPU must check every memory access generated in user mode to be sure it is between 

base and limit for that user 

 

 Any attempt by a program executing in user mode to access operating-system memory or 

other users memory results in a trap to the operating system, which treats the attempt as a 

fatal error. 

 The base and limit registers can be loaded only by the operating system, which uses a 

special privileged instruction. 
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1.2. Address Binding 

 In most cases, a user program goes through several steps—some of which may be 

optional—before being executed. 

 Addresses may be represented in different ways during these steps. Addresses in the source 

program are generally symbolic (such as the variable count). 

 A compiler typically binds these symbolic addresses to relocatable addresses (such as “14 

bytes from the beginning of this module”).  

 The linker or loader in turn binds the relocatable addresses to absolute addresses (such as 

74014). Each binding is a mapping from one address space to another. 

 Address binding of instructions and data to memory addresses can happen at three 

different stages. 

 

 Compile time: If memory location 

known a priori, absolute code can be 

generated; must recompile code if 

starting location changes. 

Example: .COM-format programs in 

MS-DOS. 

 Load time: Must generate relocatable 

code if memory location is not known at 

compile time. 

 Execution time: Binding delayed until 

run time if the process can be moved 

during its execution from one memory 

segment to another. Need hardware 

support for address maps (e.g., 

relocation registers). 

1.3. Logical versus Physical Address Space 

 An address generated by the CPU is commonly referred to as a logical address, whereas 

an address seen by the memory unit—that is, the one loaded into the memory-address 

register of the memory—is commonly referred to as a physical address. 

 Logical and physical addresses are the same in compile-time and load-time address-

binding schemes; logical (virtual) and physical addresses differ in execution-time address-

binding scheme 

 Logical address space is the set of all logical addresses generated by a program. Physical 

address space is the set of all physical addresses generated by a program 

 

 The run-time mapping from virtual to physical addresses is done by a hardware device 

called the memory-management unit (MMU). 

 We can choose from many different methods to accomplish such mapping.  
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 Consider simple scheme, which is a generalization of the base-register scheme. 

 The base register now called relocation register. The value in the relocation register is 

added to every address generated by a user process at the time it is sent to memory. 

 For example, if the base is at 14000, then an attempt an access to location 346 is mapped 

to location 14346.  

 The user program never accesses the real physical addresses. The program can create a 

pointer to location 346, store it in memory, manipulate it, and compare it with other 

addresses—all as the number 346. Only when it is used as a memory address is it relocated 

relative to the base register.  

 

 The user program deals with logical addresses; it never sees the real physical addresses 

 Execution-time binding occurs when reference is made to location in memory 

 Logical address bound to physical addresses 

 The final location of a referenced memory address is not determined until the reference is 

made. 

1.4. Dynamic Loading 

 The entire program does not need to be in memory to execute.  

 With dynamic loading, a routine is not loaded until it is called. All routines are kept on 

disk in a relocatable load format. The main program is loaded into memory and is executed.  

 When a routine needs to call another routine, the calling routine first checks to see whether 

the other routine has been loaded. If it has not, the relocatable linking loader is called to 

load the desired routine into memory and to update the program’s address tables to reflect 

this change. Then control is passed to the newly loaded routine. 

 Advantage of dynamic loading 

 A routine is loaded only when it is needed. This method is particularly useful when 

large amounts of code are needed to handle infrequently occurring cases.  

 It does not require special support from the operating system. It is the responsibility 

of the users to design their programs to take advantage of such a method. 

1.5. Dynamic Linking and Shared Libraries 

 Dynamically linked libraries (DLLs) are system libraries that are linked to user programs 

when the programs are run. 

 Static linking – system libraries and program code combined by the loader into the binary 

program image 

 Dynamic linking –linking postponed until execution time. 

 This feature is usually used with system libraries, such as the standard C language library. 

Without this facility, each program on a system must include a copy of its language library 

in the executable image. This requirement not only increases the size of an executable 

image but also may waste main memory. 

 A second advantage of DLLs is that these libraries can be shared among multiple 

processes, so that only one instance of the DLL in main memory.  

 For this reason, DLLs are also known as shared libraries, and are used extensively in 
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Windows and Linux systems.

2. Swapping 
 A process can be swapped temporarily out of memory to a backing store and then brought 

back into memory for continued execution.  

 Swapping makes it possible for the total physical address space of all processes to exceed 

the real physical memory of the system, thus increasing the degree of multiprogramming 

in a system. 

 

 
2.1. Standard Swapping 
 Standard swapping involves moving processes between main memory and a backing store. 

 Backing store – fast disk large enough to accommodate copies of all memory images for 

all users; must provide direct access to these memory images. It must be large enough to 

accommodate copies of all memory images for all users, and it must provide direct 

access to these memory images. 

 Roll out, roll in – swapping variant used for priority-based scheduling algorithms; 

lower-priority process is swapped out so higher-priority process can be loaded and 

executed. 

 Major part of swap time is transfer time; total transfer time is directly proportional to the 

amount of memory swapped and Modified versions of swapping are found on many 

systems (i.e., UNIX, Linux, and Windows) 

 System maintains a ready queue of ready-to-run processes which have memory images 

on disk 

2.2. Swapping on Mobile Systems 
 Mobile systems typically do not support swapping in any form.  

 Mobile devices generally use flash memory rather than more spacious hard disks as their 

persistent storage. The resulting space constraint is one reason why mobile operating-

system designers avoid swapping. 

 Instead of using swapping, when free memory falls below a certain threshold, Apple’s iOS 

asks applications to voluntarily relinquish allocated memory. 

 Android does not support swapping and adopts a strategy similar to that used by iOS. It 

may terminate a process if insufficient free memory is available.  

 Because of these restrictions, developers for mobile systems must carefully allocate and 

release memory to ensure that their applications do not use too much memory or suffer 
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from memory leaks.  

3. Contiguous memory allocation 
 Main memory must accommodate both the operating system and the various user 

processes. 

 In Contiguous memory allocation, main memory is usually divided into two partitions 

1) one for the resident operating system usually held in low memory addresses. 

2) one for the user processes usually held in high memory addresses. 

 In contiguous memory allocation, each process is contained in a single section of memory 

that is contiguous to the section containing the next process.

3.1. Memory Mapping and Protection 

 We can prevent a process from accessing memory that it does not own. If we have a system 

with a relocation register together with a limit register we accomplish our goal.  

 The relocation register contains the value of the smallest physical address; the limit register 

contains the range of logical addresses (for ex: relocation = 100040 and limit = 74600).  

 Each logical address must fall within the range specified by the limit register. The MMU 

maps the logical address dynamically by adding the value in the relocation register. This 

mapped address is sent to memory. 

 

 When the CPU scheduler selects a process for execution, the dispatcher loads the 

relocation and limit registers with the correct values as part of the context switch.  

 Because every address generated by a CPU is checked against these registers, we can 

protect both the operating system and the other users’ programs and data from being 

modified by this running process. 

 The relocation-register scheme provides an effective way to allow the operating system’s 

size to change dynamically.  

 For example, the operating system contains code and buffer space for device drivers. If a 

device driver is not currently in use, it makes little sense to keep it in memory; instead, it 

can be loaded into memory only when it is needed. Likewise, when the device driver is no 

longer needed, it can be removed and its memory allocated for other needs. 

3.2. Memory Allocation 

 One of the simplest methods of allocating memory is to assign processes to variably sized 

partitions in memory, where each partition may contain exactly one process.  

 In this variable partition scheme, the operating system keeps a table indicating which parts 

of memory are available and which are occupied.  

 Initially, all memory is available for user processes and is considered one large block of 

available memory, a hole. Eventually, as you will see, memory contains a set of holes of  

various sizes 
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 Figure below depicts this scheme. 

 

 Initially, the memory is fully utilized, containing processes 5, 8, and 2. After process 8 

leaves, there is one contiguous hole.  Later on, process 9 arrives and is allocated memory. 

Then process 5 departs, resulting in two noncontiguous holes.  

 When a process is allocated space, it is loaded into memory, where it can then compete for 

CPU time. When a process terminates, it releases its memory, which the operating system 

may then provide to another process. 

 The memory blocks available comprise a set of holes of various sizes scattered throughout 

memory. When a process arrives and needs memory, the system searches the set for a hole 

that is large enough for this process.  

 If the hole is too large, it is split into two parts. One part is allocated to the arriving process; 

the other is returned to the set of holes.  

 When a process terminates, it releases its block of memory, which is then placed back in 

the set of holes. If the new hole is adjacent to other holes, these adjacent holes are merged 

to form one larger hole.  

 This procedure is a particular instance of the general dynamic storage allocation problem, 

which concerns how to satisfy a request of size n from list of free holes. There are many 

solutions to this problem. 

 First fit: Allocate the first hole that is big enough.  

 Best fit: Allocate the smallest hole that is big enough. We must search the entire list, unless 

the list is ordered by size. This strategy produces the smallest leftover hole. 

 Worst fit: Allocate the largest hole. Again, we must search the entire list, unless it is sorted 

by size. This strategy produces the largest leftover hole, which may be more useful than 

the smaller leftover hole from a best-fit approach. 

 First-fit and best-fit better than worst-fit in terms of speed and storage utilization 

 
3.3. Fragmentation 
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 Both the first-fit and best-fit strategies for memory allocation suffer from external 

fragmentation. As processes are loaded and removed from memory, the free memory space 

is broken into little pieces.  

 External fragmentation exists when there is enough total memory space to satisfy a 

request but the available spaces are not contiguous: storage is fragmented into a large 

number of small holes.  

 This fragmentation problem can be severe. In the worst case, we could have a block of free 

(or wasted) memory between every two processes. If all these small pieces of memory 

were in one big free block instead, we might be able to run several more processes. 

 Depending on the total amount of memory storage and the average process size, external 

fragmentation may be a minor or a major problem.  

 Statistical analysis of first fit, for instance, reveals that, even with some optimization, given 

N allocated blocks, another 0.5 N blocks will be lost to fragmentation. That is, one-third 

of memory may be unusable! This property is known as the 50-percent rule. 

 Internal Fragmentation – allocated memory may be slightly larger than requested 

memory; this size difference is memory internal to a partition, but not being used 

 One solution to the problem of external fragmentation is compaction. The goal is to shuffle 

the memory contents so as to place all free memory together in one large block.  

 Compaction is possible only if relocation is dynamic and is done at execution time. If 

addresses are relocated dynamically, relocation requires only moving the program and data 

and then changing the base register to reflect the new base address.  

 When compaction is possible, we must determine its cost. The simplest compaction 

algorithm is to move all processes toward one end of memory; all holes move in the other 

direction, producing one large hole of available memory. This scheme can be expensive. 

 Another possible solution to the external-fragmentation problem is to permit the logical 

address space of processes to be noncontiguous, thus allowing a process to be allocated 

physical memory wherever such memory is available. 

 This is the strategy used in paging, the most common memory-management 

4. Segmentation 
 Most programmers view memory as a 

collection of variable-sized segments, 

with no necessary ordering among 

segments. 

 When writing a program, a 

programmer thinks of it as a main 

program with a set of methods, 

procedures, or functions. It may also 

include various data structures: objects, 

arrays, stacks, variables and so on. 

 

 

 Segmentation is a memory-management scheme that supports programmer view of 

memory.

4.1. Basic Method 

 A logical address space is a collection of segments. Each segment has a name and a length.  

 A logical address consists of a two tuple: 
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<segment-number,offset> 

Normally, when a program is compiled, the compiler automatically constructs segments 

reflecting the input program. 

 A C compiler might create a separate segments for the following: 
1. The code 

2. Global variables 
3. The head from which memory is allocated 
4. The stacks used by thread 
5. The standard C library 

4.2. Hardware 

 A segment table maps two-dimensional programmer-defined addresses into one-

dimensional physical addresses.  

 Each entry in the segment table has a segment base and a segment limit. The segment base 

contains the starting physical address where the segment resides in memory, and the 

segment limit specifies the length of the segment. 

 

 The use of a segment table is illustrated in Figure above.   

 The segment number s is used as an index to the segment table. The offset d of the logical 

address must be between 0 and the segment limit. If it is not, we trap to the operating 

system. 

 When an offset is legal, it is added to the segment base to produce the address in physical 

memory of the desired byte. 

Example of segmentation 

 

 

 Consider the situation shown in Figure above. We have five segments numbered from 0 

through 4. The segments are stored in physical memory as shown.  
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 The segment has a separate entry for each segment, giving the beginning address of the 

segment in physical memory and the length of that segment. 

 For example, segment 2 is 400 bytes long and begins at location 4300. Thus a reference, 

of byte 53 of segment 2 is mapped onto location 4300+53=4533.  

 A reference of segment 3, byte 852, is mapped to 3200+852=4052. 

5. Paging 
 A computer can address more memory than the amount physically installed on the system. 

This extra memory is actually called virtual memory and it is a section of a hard that's set up 

to emulate the computer's RAM.  

5.1. Basic Method 

 Paging involves breaking physical memory into fixed-size bocks called frames and 

breaking logical memory into blocks of the same size called pages. 

 Logical memory is broken into blocks of the fixed size called pages (size is power of 2, 

between 512 bytes and 8192 bytes).  

 Main memory is divided into small fixed-sized blocks of (physical) memory called frames 

and the size of a frame is kept the same as that of a page to have optimum utilization of 

the main memory and to avoid external fragmentation. 

 

 The hardware support for paging is illustrated in Figure above.  

Address Translation 

 Page address is called logical address and represented by page number and the offset. 

Logical address = Page number + Page offset 

 Frame address is called physical address and represented by a frame number and the 

offset. 

Physical address = Frame number + Page offset 

 A data structure called page map table is used to keep track of the relation between a page 

of a process to a frame in physical memory. 

Paging model of logical and physical memory 

 

 

 The page size is defined by the hardware. The size of a page is a power of 2, varying 

between 512 bytes and 1 GB per page, depending on the computer architecture. 

 The selection of a power of 2 as a page size makes the translation of a logical address into 
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a page number and page offset. 

 If the size of the logical address space is 2m, and a page size is 2n bytes, then the high-order 

m-n bits of a logical address designate the page number, and the n low-order bits designate 

the page offset. Thus, the logical address is as follows: 

 
Where p is an index into the page table and d is the displacement within the page 

Paging Example 

 

 Consider the memory in Figure above. Here, in the logical address, n=2 and m=4.  

 Using a page size of 4 bytes and a physical memory of 32 bytes (8pages), we show how 

the programmer’s view of memory can mapped into physical memory. 

 Logical address 0 is page 0, offset 0. Indexing into the page table, we find that page 0 is in 

frame 5. Thus, logical address 0 maps to physical address 20 [= (5x4) + 0]. 

 Logical address 3 maps to physical address 23 [= (5x4) + 3]. 

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to 

frame 6. Thus, logical address 4 maps to physical address 24 [= (6x4) + 0]. 

 Logical address 13 maps to physical address 9. 

Paging – Calculating internal Fragmentation 

Page size = 2,048 bytes 

Process size = 72,766 bytes 

Pages: Process size / Page size= 72,766 bytes / 2,048 bytes= 35.5 pages 

35 pages + 1,086 bytes 

Page Table Size: 32-bit address –  

Number of pages * Page table entry size= 36 pages * 4 bytes= 144 bytes 

Internal fragmentation of 2,048 - 1,086 = 962 bytes 
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Worst case fragmentation = 1 frame – 1 byte 

On average fragmentation = 1 / 2 frame size 

Free Frames 

 When the system allocates a frame to any page, it translates this logical address into a 

physical address and create entry into the page table to be used throughout execution of 

the program. 

 When a process is to be executed, its corresponding pages are loaded into any available 

memory frames. Suppose you have a program of 8Kb but your memory can accommodate 

only 5Kb at a given point in time, then the paging concept will come into picture.  

 When a computer runs out of RAM, the operating system will move idle or unwanted 

pages of memory to secondary memory to free up RAM for other processes and brings 

them back when needed by the program. 

 This process continues during the whole execution of the program where the OS keeps 

removing idle pages from the main memory and write them onto the secondary memory 

and bring them back when required by the program. 

5.2. Hardware Support 

Implementation of Page Table 

 Page table is kept in main memory 

 Page-table base register (PTBR) points to the page table 

 Page-table length register (PRLR) indicates size of the page table 

 In this scheme every data/instruction access requires two memory accesses. One for the 

page table and one for the data/instruction. 

 The two memory access problem can be solved by the use of a special fast-lookup 

hardware cache called associative memory or translation look-aside buffers (TLBs) 

       Paging Hardware With TLB 

 
 

 Memory structures for paging can get massive using straight-forward methods 

Page Size: 4 KB  

Process size: 1094 MB  

Address is 32 bit 

Number of pages = Process size / Page size= 1,147,483,648 bytes / 4,096 bytes (since 4 

KB = 4,096 bytes)= 280,230 pages 

Page table size = Number of pages * Page table entry size= 280,230 pages * 4 bytes= 

1,120,920 bytes= 1.07 MB (approximately) 

5.3. Protection 

 Memory protection implemented by associating protection bit with each frame 

 Valid-invalid bit attached to each entry in the page table: 
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 “valid” indicates that the associated page is in the process logical address space, and is 

thus a legal page “invalid” indicates that the page is not in the process’ logical address 

space 

 Valid (v) or Invalid (i) Bit In A Page Table 

 
5.4. Shared Pages 

 An advantage of paging is the possibility of sharing common code. This consideration is 

particularly important in a time-sharing environment. 

Shared code 

 One copy of read-only (reentrant) code shared among processes (i.e., text editors, 

compilers, window systems). 

 Shared code must appear in same location in the logical address space of all processes 

Private code and data 

 Each process keeps a separate copy of the code and data 

 The pages for the private code and data can appear anywhere in the logical address space. 

Shared Pages Example 

 

 Consider a system that supports 40 users, each of whom executes a text editor. If the text 

editor consists of 150 KB of code and 50 KB of data space, we need 8000 KB to support 

the 40 users. 

 If the code is reentrant code (or pure code), however, it can be shared, as shown in figure 

below. Here, we see three processes sharing a three-page editor – each page 50 KB in size. 

Each process has its own data page. 

 Reentrant code is non-self-modifying code: it never changes during execution. Thus, two 

or more processes can execute the same code at the same time.  Each process has its own 

copy of registers and data storage to hold the data for the process’s execution. 

6. Structure of the Page Table 
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6.1. Hierarchical Paging 

 Break up the logical address space into multiple page tables A simple technique is a two-

level page table. 

Two-Level Page-Table Scheme 

 
Two-Level Paging Example 

 A logical address (on 32-bit machine with 4K page size) is divided into:  

 a page number consisting of 20 bits  

 a page offset consisting of 10 bits 

 Since the page table is paged, the page number is further divided into:  

 a 10-bit page number  

 a 10-bit page offset 

 Thus, a logical address is as follows: 

 
where pi is an index into the outer page table, and p2 is the displacement within the page 

of the inner page table 

 This scheme is known as a forward-mapped page table. 

Address Translation Scheme 

 
6.2. Hashed Page Tables 

 A common approach for handling address spaces larger than 32 bits is to use a hashed 

page table, with the hash value being the virtual page number.  

 Each entry in the hash table contains a linked list of elements that hash to the same location. 

 Each element consists of three fields: 

1. The virtual page number 

2. The value of the mapped page frame, and  

3. a pointer to the next element in the linked list. 

 The algorithm works as follows: 

 The virtual page number in the virtual address is hashed into the hash table 
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 The virtual page number is compared with field 1 in the first element in the linked list. 

 If there is a match, the corresponding page frame (field 2) is used to form the desired 

physical address. 

 If there is no match, subsequent entries in the linked list are searched for a matching 

virtual page number. 

 
6.3. Inverted Page Tables 

 An inverted page table has one entry for each real page of memory 

 Entry consists of the virtual address of the page stored in that real memory location, with 

information about the process that owns that page 

 Decreases memory needed to store each page table, but increases time needed to search 

the table when a page reference occurs 

 Use hash table to limit the search to one — or at most a few — page-table entries 
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STORAGE MANAGEMENT 

1. Overview of Mass Storage Structure 

1.1. Magnetic Disks 

 Magnetic disks provide the bulk of secondary storage for modern computer systems.  

 Each disk platter has a flat circular shape, like a CD. Common platter diameters range from 

1.8 to 3.5 inches.  

 

 The two surfaces of a platter are covered with a magnetic material. We store information 

by recording it magnetically on the platters. 

 A read-write head “flies” just above each surface of every platter. The heads are attached 

to a disk arm that moves all the heads as a unit.  

 The surface of a platter is logically divided into circular tracks, which are subdivided into 

sectors. The set of tracks that are at one arm position makes up a cylinder.  

 There may be thousands of concentric cylinders in a disk drive, and each track may 

contains hundreds of sectors.  

 When the disk is in use, a drive motor spins it at high speed. Most drives rotate 60 to 250 

times per second, specified in terms of rotations per minute (RPM).  

 Disk speed has two parts:  

 The transfer rate is the rate at which data flow between the drive and computer.  

 The positioning time, or random-access time, consists of two parts:  

 the time necessary to move the disk arm to the desired cylinder, called the seek 

time, and  

 the time necessary for the desired sector to rotate to the disk head, called the 

rotational latency. 

 A disk drive is attached to a computer by a set of wires called an I/O bus. The data transfers 

on a bus are carried out by special electronic processors called controllers. The host 

controller is the controlled at the computer end of the bus. 
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 A disk controller is built into each disk drive. To perform a disk I/O operation, the 

computer places a command into the host controller, typically using memory-mapped I/O 

ports. 

 The host controller then sends the command via messages to the disk controller, and the 

disk controller operates the disk-drive hardware to carry out the command. 

1.2. Solid-State Disks 

 An SSD is nonvolatile memory that is used like a hard drive.  

 SSDs have the same characteristics as traditional hard disks but can be more reliable 

because they have no moving parts and faster because they have no seek time or latency. 

 In addition, then consume less power. However, they are more expensive per megabyte 

than traditional hard disks, have less capacity than the larger hard disks, and may have 

shorter life spans than hard disks. 

 One use for SSDs is in storage arrays, where they hold file-system metadata that require 

high performance.  

1.3. Magnetic Tapes 

 Magnetic tape was used as an early secondary-storage medium. It is permanent and can 

hold large quantities of data. Its access time is slow compared with that of main memory 

and magnetic disks.  

 Tapes are mainly used for backup, for storage of infrequently used information and as a 

medium for transferring information from one system to another. 

 A tape is kept in a spool and is wound or rewound past a read – write head. Moving to the 

correct spot on a tape can take minutes, but once positioned, tape drives can write data at 

speeds comparable to disk drives. 

 Tapes and their drives are usually categorized by width, including 4, 8 and 19 millimeters 

and ¼ and ½ inch. 

2. Disk Scheduling 

 Disk scheduling algorithms are used to allocate the services to the I/O requests on the disk.  

 If desired disk drive and controller is available, request is served immediately. If busy, 

new request for service will be placed in the queue of pending requests for that drive.  

 When one request is completed, the Operating System has to choose which pending 

request to service next.  

 The Operating system relies on the type of algorithm it needs when dealing and choosing 

what particular disk request is to be processed next.  

 The objective of using these algorithms is keeping Head movements to the amount as less 

possible. The less the head to move, the faster the seek time will be.  

2.1. FCFS Scheduling 

 The simplest form of disk scheduling algorithm is the first-come, first-served (FCFS) 

algorithm. 
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 The I/O requests are served or processes according to their arrival. The request arrives first 

will be accessed and served first.  

 Since it follows the order of arrival, it causes the wild swings from the innermost to the 

outermost tracks of the disk and vice versa. The farther the location of the request being 

serviced by the read/write head from its current location, the higher the seek time will be. 

Example 

 
 Consider, for example, a disk queue with requests for I/O blocks on cylinders 

98, 183, 37, 122, 14, 124, 65, 67   in that order 

 If the disk scheduling is initially at cylinder 53, it will first move from 53 to 98, then 183, 

37, 122, 14, 124, 65, 67, for a total head movement of 640 cylinders. 

 Total head movement computation (TMH)= (98-53)+(183-98)+(183-37)+(122-37)+(122-

14)+(124-14)+(124-65)+(67-65) = 640 cylinders 

 Assuming a seek rate of 5 milliseconds is given, Seek Time = TMH * Seek Rate = 3,200ms 

2.2. SSTF Scheduling 

 The SSTF algorithm selects the request with the least seek time from the current head 

position. In other words, SSTF chooses the pending request closes to the current head 

position. 

 For our example, request queue, the closest request to the initial head position 53 is at 

cylinder 65. Once we are cylinder 65, the next closest request is at cylinder 67, from there, 

the request at cylinder 37 is closer than the one at 98, so 37 is served next. Continuing, we 

service the request at cylinder 14, then 98, 122, 124 and finally 183. 

 This scheduling algorithm results in a total head movement of only 236 cylinders.  

 This algorithm gives a substantial improvement of performance. SSTF scheduling is 

essentially a form of shortest-job first (SJF) scheduling; and it may cause starvation of 

some requests.  

2.3. SCAN Scheduling 

 In the SCAN algorithm, the disk arm starts at one end of the disk and moves towards the 

other end, servicing requests as it reaches each cylinder, until it gets to the other end of the 
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disk. At the other end, the direction of head movement is reversed, and servicing continues. 

The head movement continuously scans back and forth across the disk. 

 The scan algorithm sometimes called the elevator algorithm, since the disk arm behaves 

just like an elevator in a building, first servicing all the requests going up and then 

reversing to service requests the other way. 

 
 Before applying SCAN to schedule the requests on cylinders 98, 183, 37, 122, 14, 124, 65 

and 67, we need to know the direction of head movement in addition to the head’s current 

position.  

 Assuming that the disk arm is moving toward 0 and that the initial head position is at 53, 

the head will next service 37 and then 14. 

 At cylinder 0, the arm will reverse and will move toward the other end of the disk, servicing 

the requests at 65, 67, 98, 122, 124 and 183.  

 If a request arrives in the queue just in front of the head, it will be serviced almost 

immediately; a request arriving just behind the head will have to wait until the arm moves 

to the end of the disk, reverses direction, and comes back. 

2.4. C-Scan Scheduling 

 Circular SCAN Scheduling is a variant of SCAN designed to provide a more uniform wait 

time.  

 Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing the 

requests along the way. When the head reaches the other end, however, it immediately 

returns to the beginning of the disk without servicing any requests on the return trip. 

 The C-SCAN scheduling algorithm essentially treats the cylinders as a circular list that 

wraps around from the final cylinder to the first one. 
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2.5. LOOK Scheduling 

 Both SCAN and C-SCAN move the disk arm across the full width of the disk. In practice, 

neither algorithm is often implemented this way. 

 More commonly, the arm goes only as far as the final request in each direction. Then it 

reverses direction immediately, without going all the way to the end of the disk. 

 Versions of SCAN and C-SCAN that follow this pattern are called LOOK and C-LOOK 

scheduling, because they look for a request before continuing to move in a given direction. 

2.6. Selection of a Disk-Scheduling Algorithm 

 SSTF is common and has a natural appeal because it increases performance over FCFS. 

 SCAN and C-SCAN perform better for systems that place a heavy load on the disk, 

because they are less likely to cause a starvation problem. 

 To avoid starvation Linux implements deadline scheduler  

 Maintains separate read and write queues, gives read priority 

 Because processes more likely to block on read than write 

 Implements four queues: 2x read and 2x write 

 1 read and 1 write queue sorted in LBA order, essentially implementing C-SCAN 

 1 read and 1 write queue sorted in FCFS order 

 All I/O requests sent in batch sorted in that queue’s order 

 After each batch, checks if any requests in FCFS older than configured age 

(default 500ms) 

o If so, LBA queue containing that request is selected for next batch of I/O 

 

 


