
Arrays
• An array is a container object that holds a fixed number of values of a

single type.

• The length of an array is established when the array is created. After
creation, its length is fixed.

• Array elements are automatically initialized with the default value of
their type, When an array is created

DECLARING A VARIABLE TO REFER TO AN ARRAY

int[] anArray;

byte[] anArrayOfBytes;

short[] anArrayOfShorts;

long[] anArrayOfLongs;

float[] anArrayOfFloats;

double[] anArrayOfDoubles;

boolean[] anArrayOfBooleans;

char[] anArrayOfChars;

String[] anArrayOfStrings;

// this form is discouraged
float anArrayOfFloats[];

dataType[] arr;

dataType []arr;

dataType arr[];

CREATING, INITIALIZING, AND ACCESSING AN ARRAY

One way to create an array is with the new operator.

int[] anArray;

The statement allocates an array with enough memory for 10 integer
elements and assigns the array to the anArray variable.

// create an array of integers
anArray = new int[10];

CREATING, INITIALIZING, AND ACCESSING AN ARRAY

Initialization

anArray[0] = 100; // initialize first element

anArray[1] = 200; // initialize second element

Accessing Values

System.out.println("Element 1 at index 0: " + anArray[0]);

System.out.println("Element 2 at index 1: " + anArray[1]);

CREATING, INITIALIZING, AND ACCESSING AN ARRAY

Alternatively, you can use the shortcut syntax to create and initialize
an array:

int[] anArray = { 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000};

int[] anArray = new int[]{ 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000};

Quiz
Select which of the following are valid array definition

1. int[] a;

a = new int[5];

2. int a[] = new int[5]

3. int a[5] = new int[5];

4. int a[] = {1,2,3};

5. int[] a = new int[]{1,2,3};

6. int[] a = new int[5]{1,2,3,4};

Try it and Tell me
public class ArrayDemo
{
public static void main(String[] args)
{
int[] x;
x = new int[5];
x[0] = 11;

x[4] = 22;
System.out.println("Element at index 0: " + x[0]);
System.out.println("Element at index 1: " + x[1]);
System.out.println("Element at index 4: " + x[4]);
}

}

Do It Yourself
Write a program to print all the arguments passed to a FindArguments.java
program.

Input: Number of arguments can be 0 to 12

Output Format:

The Number of Arguments are :

The Following are the Arguments:
Example: java FindArguments Hi Sai Kiran

Output:

The Number of Arguments are : 3

The Following are the Arguments:

1 Hi

2 Sai

3 Kiran

ARRAY COPY

• To copy array elements from one array to another array, we can use

arraycopy static method from System class.

• Syntax:

public static void arraycopy(Object s, int sIndex,
Object d, int dIndex, int length)

• Ex:

Int[] source = {1, 2, 3, 4, 5, 6};

int[] dest = new int[10];

System.arraycopy(source,0, dest,0,source.length);

ARRAY COPY

public class ArrayLengthDemo

{

public static void main(String[] args)

{

int[] source = {100, 200, 300};

int[]dest = new int[3];

System.arraycopy(source, 0, dest, 0, source.length);

for (int i =0; i <dest.length; i++)

System.out.println("Element at index " + i + ": " +dest[i]);

}

}

Do It Yourself
Initialize an integer array with ascii values and
print the corresponding character values in a
single row.

Do It Yourself
Write a program to initialize an integer array
with the command line arguments and print the
sum and average of the array.

The number of Arguments is limited to
maximum of 10.

Do It Yourself
Write a program to initialize an integer array
and find the maximum and minimum value of an
array

The number of Arguments is limited to
maximum of 10.

Integer.MAX_VALUE

Integer.MIN_VALUE

Do It Yourself
Write a program to find the largest 2 numbers and the smallest 2 numbers
in the array initialized from the command line arguments.

The number of Arguments is limited to maximum of 10.

Test Values: 1 2 3 4 5 6 7 8 9 10

o/p: Largest is 10 Second Largest is 9

Smallest is 1 Second Smallest is 2

Test Values: 12 1 2 3 4 5 6 7 8 9

Test Values: 1 2 3 4 5 6 7 8 9

Do It Yourself
Write a program to find the Maximum Sum by considering any 9 out of 10
values.

The number of Arguments is 10.

Test Values: 4 2 5 8 9 10 12 14 16 30

o/p: Maximum Sum of 9 numbers is 108

Do It Yourself
Write a program to initialize an integer array with values and check
if a given number is present in the array or not. If the number is not
found, it will print -1 else it will print the index value of the given
number in the array

Ex1) Array elements are {1,4,34,56,7}

and the search element is 90

O/P: -1

Ex2)Array elements are {1,4,34,56,7}

and the search element is 56

O/P: 4

Do It Yourself

Write a program to initialize an array and
print them in a sorted fashion.

The number of Arguments is limited to
maximum of 10.

Do It Yourself
Write a program to print the sum of the elements of the array with the

given condition. If the array has 6 and 7 in succeeding orders, ignore 6

and 7 and the numbers between them for the calculation of sum.

Eg1) Array Elements - 10,3,6,1,2,7,9

O/P: 22 [i.e 10+3+9]

Eg2) Array Elements - 7,1,2,3,6

O/P:19

Eg3) Array Elements - 1,6,4,7,9

O/P:10

Ex4: Array Elements – 1,2,3,4,6,5,4,3

o/p:28

Ex 5: 6 7 6 1 2 3 4 5 6 7

Ex 6: 1 6 2 7 1 6 3 4 7 6 6 7 7

Do It Yourself
Write a Java program to insert an element (specific position) into an array.

Initialize the array with the following values

Int []array=new int[10]{1,2,3,4,5,6,7,8,9}

Accept two command line arguments First one is value and second is

position

Ex: java InsPos 10 4

Required: insert 10 at position 4

Output: 1,2,3,10,4,5,6,7,8,9

Do It Yourself

Write a program to remove the duplicate

elements in an array and print

The number of Arguments is limited to

maximum of 10.

Eg) Array Elements--12,34,12,45,67,89

O/P: 12,34,45,67,89

Do It Yourself
Write a program to print the element of an array that has occurred the

highest number of times

The number of Arguments is limited to maximum of 10.

Eg) Array -> 10,20,10,30,40,100,99

O/P:10

Do It Yourself
Write a Java program to find the common elements between two arrays.

Create and initialize two arrays.

Example:

Array1 = {1,2,3,4,5,6,7,8,9}

Array2={4,10,12,5,23,6,15,19,8}

Output: Common Elements are : 4,5,6,8

TWO DIMENSIONAL ARRAY

Two-dimensional arrays are arrays of arrays

The 1st dimension represent rows or number of one dimension, the 2nd

dimension represent columns or number of elements in the each one
dimensions.

datatype[][] arrayname;

• Initializing two-dimensional arrays:

int[][] y = new int[3][3];

TWO DIMENSIONAL ARRAY

• You can initialize the row dimension without initializing the columns
but not vice versa

int[][] x = new int[3][];

int[][] x = new int[][3]; //error

• The length of the columns can vary for each row and initialize
number of columns in each row

int [][]x = new int [2][];

x[0] = new int[5];

x[1] = new int [3];

TWO DIMENSIONAL ARRAY

• The curly braces { } may also be used to initialize two dimensional
arrays

Ex: int[][] y = { {1,2,3}, {4,5,6}, {7,8,9} };

int[][] y = new int[3][] { {1,2,3}, {4,5,6}, {7,8,9} };

Ex2:

int [][]x = new int [3][];

x[0] = new int[]{0,1,2,3};

x[1] = new int []{0,1,2};

x[2] = new int[]{0,1,2,3,4};

CREATING, INITIALIZING, AND ACCESSING AN ARRAY
class TwoDimDemo {

public static void main(String[] args) {

int [][] x = new int[3][];

x[0] = new int[3];

x[1] = new int[2];

x[2] = new int[5];

for(int i=0; i < x.length; i++) {

for (int j=0; j < x[i].length; j++) {

x[i][j] = i; System.out.print(x[i][j]);

}

System.out.println();

}

}

}

Do It Yourself
Write a program to reverse the elements of a given 2*2 array. Four integer
numbers needs to be passed as Command Line arguments.

Example1: C:\>java Sample 1 2 3
O/P Expected : Please enter 4 integer numbers

Example2: C:\>java Sample 1 2 3 4
O/P Expected :

The given array is :
1 2
3 4
The reverse of the array is :
4 3
2 1

Do It Yourself
Write a program to find greatest number in a 3*3 array. The program is

supposed to receive 9 integer numbers as command line arguments.

Example1: C:\>java Sample 1 2 3

O/P Expected : Please enter 9 integer numbers

Example2:C:\>java Sample 1 23 45 55 121 222 56 77 89

O/P Expected :

The given array is :

1 23 45

55 121 222

56 77 89

The biggest number in the given array is 222

Inheritance

• Inheritance in Java is a mechanism in which one object
acquires all the properties and behaviors of a parent
object.

• The idea behind inheritance in Java is that you can create
new classes that are built upon existing classes.

• When you inherit from an existing class, you can reuse
methods and fields of the parent class. Moreover, you can
add new methods and fields in your current class also.

Inheritance

• Class: A class is a group of objects which have common properties. It
is a template or blueprint from which objects are created.

• Sub Class/Child Class: Subclass is a class which inherits the other
class. It is also called a derived class, extended class, or child class.

• Super Class/Parent Class: Superclass is the class from where a
subclass inherits the features. It is also called a base class or a parent
class.

• Reusability: As the name specifies, reusability is a mechanism which
facilitates you to reuse the fields and methods of the existing class
when you create a new class. You can use the same fields and
methods already defined in the previous class.

Syntax Inheritance

class Subclass-name extends Superclass-name
{

//methods and fields
}

class Employee
{
}

class Programmer extends Employee
{
}

Try it
class A{

int m, n;
void display1(){

System.out.println("m and n are:"+m+" "+n);
}

}
class B extends A{

int c;
void display2(){

System.out.println("c :" + c);
}
void sum(){

System.out.println("m+n+c = " + (m+n+c));
}

}

Try it
class InheritanceDemo{

public static void main(String args[])
{

B s2=new B();
s2.m = 7;
s2.n = 8;
s2.c = 9;
s2.display1();
s2.display2();
System.out.println("sum of m, n and c in object B is:");
s2.sum();

}
}

Try it
class Employee

{
int Salary;
Employee(){
Salary=1000;}

}
class Programmer extends Employee

{
int bonus=0;
Programmer(int sal,int bon)

{
Salary = sal;
bonus=bon;

}
}

class Main
{

public static void main(String args[])
{

Programmer pg=new Programmer(2000,200);
System.out.println(pg.Salary);
System.out.println(pg.bonus);

}
}

Programmer object can access the
field of own class as well as of
Employee class i.e. code reusability.

Try it

class Main
{

public static void main(String args[])
{

Programmer pg=new Programmer(2000,200);
System.out.println(pg.Salary);
System.out.println(pg.bonus);
Employee emp=new Employee();
System.out.println(emp.Salary);

}
}

Try it

class Main
{

public static void main(String args[])
{

Programmer pg=new Programmer(2000,200);
System.out.println(pg.Salary);
System.out.println(pg.bonus);
Employee emp=new Employee();
System.out.println(emp.Salary);
System.out.println(emp.bonus);

}
}

Private Members - Inheritance
A subclass includes all of the members of its superclass

But, it cannot directly access those members of the super class that have
been declared as private.

class B extends A{

int total;

void sum(){

total = money + pocketMoney;

}

}

class A{
int money;
private int pocketMoney;
void fill (int money, int pocketMoney)
{

this.money = money;
this.pocketMoney = pocketMoney;

}
}

Try it

class A{

int money;

private int pocketMoney;

void fill(int money, int pocketMoney)

{
this.money = money;

this.pocketMoney = pocketMoney;

}
public int getPocketMoney(){

return pocketMoney;

}

}

class B extends A{

int total;

void sum(){

total = money + getPocketMoney();

}

}

class C
{

public static void main(String args[])
{

B s1=new B();
s1.fill(1000,500);
s1.sum();
System.out.println(s1.total);

}
}

Constructors - Inheritance
• The creation and initialization of the superclass object is a prerequisite to

the creation of the subclass object.

• When a subclass object is created,

– It creates the superclass object

– Invokes the relevant superclass constructor.

– The initialized superclass attributes are then inherited by the
subclass object

– finally followed by the creation of the subclass object

– initialization of its own attributes through a relevant constructor
subclass

Constructors - Inheritance
class A

{
int a;
A()
{

a=10;
System.out.println("in Class A Constructor");

}
}

class B extends A
{

int b;
B()
{

b=20;
System.out.println("in Class B Constructor");

}
}

class C
{

public static void main(String args[])
{

B s1=new B();
System.out.println(s1.a +" " +s1.b);

}
}

Constructors - Inheritance

class A
{

int a;
A()
{

a=10;
System.out.println("in Class A Constructor");

}
A(int val)
{

a=val;
}

}

class B extends A
{
int b;
B()
{
b=20;
System.out.println("in Class B Constructor");

}
B(int val)
{

b=val;
System.out.println("a is " +a +" b is " +b);

}
}

B b2=new B(50);

Super Keyword in Java

• The super keyword in java is a reference variable that is used to refer
parent class objects.

• Use of super with variables: This scenario occurs when a derived class
and base class has same data members. In that case there is a possibility
of ambiguity for the JVM.

• Use of super with constructors: super keyword can also be used to
access the parent class constructor. One more important thing is that,
‘’super’ can call both parametric as well as non parametric constructors
depending upon the situation.

• Use of super with methods: This is used when we want to call parent
class method.

Super with Constructors - Inheritance

class A
{

int a;
A()
{

a=10;
System.out.println("in Class A Constructor");

}
A(int val)
{

a=val;
}

}

class B extends A
{
int b;
B()
{
b=20;
System.out.println("in Class B Constructor");

}
B(int val)
{
super(val*2);
b=val;
System.out.println("a is " +a +" b is " +b);

}
}B b2=new B(50);

Super with Constructors - Inheritance

class A
{

A(int a)
{

System.out.println(a);
}

}
class B extends A

{
B(String str)
{

super(10);
System.out.println(str);

}
}

class C
{

public static void main(String args[])
{

B obj=new B("Hello");
}

}

class A
{

A(int a)
{

System.out.println(a);
}

A(String str)
{

System.out.println(str);
}

}

Super with Constructors - Inheritance

class C
{

public static void main(String args[])
{

B obj=new B("Hello");
}

}

class B extends A
{

B(String str)
{

super(10);
System.out.println(str);

}
}

Super with Variables - Inheritance
class A

{
int val=0;

}
class B extends A

{
int val=0;
void set(int val)

{
val=val+10;
this.val=val+20;
super.val=val*2;
System.out.println("arg Val is"+val +" B val

is "+this.val +" A val is "+super.val);

}
}

class C
{

public static void main(String args[])
{

B obj=new B();
obj.set(20);

}
}

Super with Variables - Inheritance
class Vehicle
{

int maxSpeed = 120;
}

/* sub class Car extending vehicle */
class Car extends Vehicle
{

int maxSpeed = 180;

void display()
{

/* print maxSpeed of base class (vehicle) */
System.out.println("Maximum Speed: " + super.maxSpeed);

}
}

/* Base class Person */
class Person
{

void message()
{

System.out.println("This is person class");
}

}

/* Subclass Student */
class Student extends Person
{

void message()
{

System.out.println("This is student class");
}

void display()
{

message();
super.message();

}
}

Super with Method- Inheritance
whenever a parent and child class
have same named methods then to
resolve ambiguity we use super
keyword.

Types of Inheritance

Types of Inheritance

Single Inheritance

class Animal{
void eat()
{

System.out.println("eating...");
}

}
class Dog extends Animal{
void bark()

{
System.out.println("barking...");

}
}

class TestInheritance{
public static void main(String args[])

{
Dog d=new Dog();
d.bark();
d.eat();

}
}

Multilevel Inheritance

• Java allows us to define multiple layers hierarchy

• We can define a superclass and a subclass, with the subclass in
turn becoming a superclass for another subclass

• Consider the following example

• Employee

• Manager is a Employee

• Director is a Manager

Multilevel Inheritance

class Animal{
void eat(){
System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){
System.out.println("barking...");}
}
class BabyDog extends Dog{
void weep(){
System.out.println("weeping...");}
}

class TestInheritance2{
public static void main(String args[])
{
BabyDog d=new BabyDog();
d.weep();
d.bark();
d.eat();
}
}

Hierarchical Inheritance
• When two or more classes inherits a single class, it is known

as hierarchical inheritance.

class Animal{
void eat(){
System.out.println("eating...");}
}
class Dog extends Animal{
void bark(){
System.out.println("barking...");}
}
class Cat extends Animal{
void meow(){
System.out.println("meowing...");}
}

class TestInheritance3{
public static void main(String args[]){
Cat c=new Cat();
c.meow();
c.eat();
//c.bark();//C.T.Error
}}

Multiple Inheritance

• To reduce the complexity and simplify the
language, multiple inheritance is not supported
in java.

• Consider a scenario where A, B, and C are three
classes. The C class inherits A and B classes.

• If A and B classes have the same method and you
call it from child class object, there will be
ambiguity to call the method of A or B class.

Hybrid Inheritance

• Hybrid means consist of more than one.
Hybrid inheritance is the combination of
two or more types of inheritance.

DIY
Create a class named ‘Animal’ which includes methods like eat() and sleep().

Create a child class of Animal named ‘Bird’ and override the parent class

methods. Add a new method named fly().

Create an instance of Animal class and invoke the eat and sleep methods

using this object.

Create an instance of Bird class and invoke the eat, sleep and fly methods

using this object.

DIY
Create a class called Person with a member variable name. Save it in a file

called Person.java

Person

private name

public setName(String name);

public String getName();

.

DIY
Create a class called Employee who will inherit the Person class.

The other data members of the employee class are annual salary (double),

the year the employee started to work, and the national insurance number

which is a String. Save this in a file called Employee.java

Employee extends Person

private double salary

private String doj

private int no

public addSalary(Salary) public double getSalary()

public addDoj(DOJ)

public addNo(no)

DIY
A HighSchool application has two classes: the Person superclass and the

Student subclass.

Using inheritance, you will create two new classes, Teacher and

CollegeStudent.

A Teacher will be like Person but will have additional properties such as

salary (the amount the teacher earns) and subject (e.g. “Computer Science”,

“Chemistry”, “English”, “Other”).

The CollegeStudent class will extend the Student class by adding a year

(current level in college) and major (e.g. “Electrical Engineering”,

“Communications”, “Undeclared”).

Inheritance (IS-A) and Association (HAS-A) in Java

Inheritance (IS-A)

• An IS-A relationship signifies that one object is
a type of another. It is implemented using
‘extends’ and ‘implements’ keywords.

Association (HAS-A)

• A HAS-A relationship signifies that a class has
a relationship with another class.

• In object-oriented programming, objects are related to each other and
use the common functionality between them.

Association
• Association is a relationship between two objects

• The association between objects could be

– one-to-one

– one-to-many

– many-to-one

– many-to-many

• Types of Association

– Aggregation

– Composition

• Example: A Student and a Faculty are having an association

Types of Association

• An aggregation container class and referenced class can have an
independent existence.

• A composition reference class cannot exist if the container class is
destroyed.

• A car has its parts e.g., engines, wheels, music player, etc.

• The car cannot function without an engine and wheels but can
function without a music player.

• Here the engine and car have a composition relation, and the car and
music player have an aggregation relationship.

• In the case of Aggregation, an object can exist without being part of the
main object.

Aggregation

• Aggregation is a special case of association

•Its a directional association, which means it is strictly
a one way association. Aggregation is also called a “Has-a”
relationship.

• Consider two classes Student class and Address class.

• Every student has an address so the relationship between student and
address is a Has-A relationship.

• But if you consider its vice versa then it would not make any sense as
an Address doesn’t need to have a Student necessarily.

Aggregation

class Address
{

int streetNum;
String city;
String state;
String country;
Address(int street, String c, String st, String coun)
{

this.streetNum=street;
this.city =c;
this.state = st;
this.country = coun;

}
}

class StudentClass
{

int rollNum;
String studentName;
//Creating HAS-A relationship with Address class
Address studentAddr;
StudentClass(int roll, String name, Address addr){

this.rollNum=roll;
this.studentName=name;
this.studentAddr = addr;

}

Need for Aggregation

• To maintain code re-usability.

• Suppose there are two other classes College and Staff along with above
two classes Student and Address.

• In order to maintain Student’s address, College Address and Staff’s address
we don’t need to use the same code again and again.

• Student Has-A Address (Has-a relationship between student and address)

• College Has-A Address (Has-a relationship between college and address)

• Staff Has-A Address (Has-a relationship between staff and address)

Polymorphism

• Polymorphism means "many forms“

• Polymorphism in Java is a concept by which we can perform
a single action in different ways.

• Polymorphism in Java is the ability of an object to take many
forms.

• The human body has different organs. Every organ has a different
function to perform. So we have a standard method function that
performs differently depending upon the organ of the body.

Types of Polymorphism

Polymorphism in Java can be performed by two different
methods:

1. Method Overloading

2. Method Overriding

Method overloading is an example of Static Polymorphism.

Method Overriding is an example of Dynamic/Runtime
Polymorphism.

Method Overloading

Method overloading is defined as a process that can create multiple
methods of the same name in the same class, and all the methods work
in different ways.

Method overloading occurs when there is more than one method of the
same name in the class.

public void intSquare (int number)

public void doubleSquare(double number)

public void longSquare(long number)

public void Square (int number)

public void Square(double number)

public void Square(long number)

How to Overload

In java, we do method overloading in three ways: –

1. By changing the number of parameters.

2. By changing data types.

3. Sequence of Data type of parameters.

Method overloading cannot be done by changing the return
type of methods.

class TestOverloading2
{

public static void main(String[] args)
{

System.out.println(Sum.add(17,13));
System.out.println(Sum.add(10.4,10.6));

}
}

Changing the data types:
class Sum
{

static int add(int a, int b)
{

return a+b;
}

static double add(double a, double b)
{

return a+b;
}

}

class TestOverloading2
{

public static void main(String[] args)
{

System.out.println(Divi.divide(17,2.0));
System.out.println(Divi.divide(10.4,2));

}
}

Changing the sequence of data types:
class Divi
{

static double divide(int a, double b)
{

return (a/b);
}

static double divide(double a, int b)
{

return (a/b);
}

}

Changing the Return types:

class Sample{
int disp(int x){

return x;
}
double disp(int y){

return y;
} public static void main(String args[])

{
Sample s = new Sample();
System.out.printIn("Value of x : " + s.disp(5));
System.out.printIn("Value of y : " + s.disp(6.5));
}

}

Method Overloading
class CalculateSquare
{

public void square() {
System.out.println("No Parameter Method Called");

}
public int square(int number) {

int square = number * number;
System.out.println("Method with Integer Argument

Called:"+square);
}

public float square(float number) {
float square = number * number;
System.out.println("Method with float Argument

Called:"+square);
}

public static void main(String[] args)
{

CalculateSquare obj = new CalculateSquare();
obj.square();
obj.square(5);
obj.square(2.5);

}
}

Benefits of Overloading

• Method overloading increases the readability of the
program.

• This provides flexibility to programmers so that they can
call the same method for different types of data.

• This makes the code look clean.

Type Promotion
class Demo{

void disp(int a, double b){
System.out.println("Method A");

}
void disp(double a, double b){

System.out.println("Method B");
}

public static void main(String args[]){
Demo obj=new Demo();
obj.disp(100.0, 20);
obj.disp(100, 20);
obj.disp(100, 20.0);

}
}

When a data type of smaller size
is promoted to the data type of
bigger size than this is called
type promotion,

for example: byte data type can
be promoted to short, a short
data type can be promoted to int,
long, double etc.

Is it Valid???
int mymethod(int a, int b, float c)
int mymethod(int var1, int var2, float var3)

int mymethod(int a, int b)
int mymethod(float var1, float var2)

int mymethod(int a, int b)
int mymethod(int num)

float mymethod(int a, float b)
float mymethod(float var1, int var2)

int mymethod(int a, int b)
float mymethod(int var1, int var2)

Method Overriding

• Declaring a method in sub class which is already present in parent
class(Same Prototype) is known as method overriding.

• Overriding is done so that a child class can give its own
implementation to a method which is already provided by the parent
class.

• In this case the method in parent class is called overridden method
and the method in child class is called overriding method.

• When an overridden method is called from an object of the subclass,
it will always refer to the version defined by the subclass

Method Overriding

Method Overriding

class Shapes {
public void area() {

System.out.println("The formula for area of ");
}

}
class Triangle extends Shapes {

public void area() {
System.out.println("Triangle is ½ * base * height ");

}
}

class Circle extends Shapes {
public void area() {

System.out.println("Circle is 3.14 * radius * radius ");
}

}

class Main {
public static void main(String[] args) {

Shapes myShape = new Shapes();
Shapes myTriangle = new Triangle();
Shapes myCircle = new Circle();
myShape.area();
myTriangle.area();
myShape.area();
myCircle.area();

}
}

Advantage Method Overriding

• The main advantage of method overriding is that the class
can give its own specific implementation to an inherited
method without even modifying the parent class code.

• This is helpful when a class has several child classes, so if a
child class needs to use the parent class method, it can use
it and the other classes that want to have different
implementation can use overriding feature to make
changes without touching the parent class code.

upcasting

• A superclass reference variable can refer to a subclass object. This is
also known as upcasting.

• Java uses this fact to resolve calls to overridden methods at run time.

• In dynamic method dispatch the object can call the overriding methods
of child class and all the non-overridden methods of base class but it
cannot call the methods which are newly declared in the child class.

upcasting
class A
{

void m1()
{

System.out.println("Inside A's m1 method");
}

}
class B extends A
{

void m1()
{

System.out.println("Inside B's m1 method");
}
void disp()
{

System.out.println("Inside Disp Method");
}

}

class Dispatch
{

public static void main(String args[])
{

A a = new A();
B b = new B();
A ref;
ref = a;
ref.m1();
ref = b;
ref.m1();

}
}

upcasting
class A
{

void m1()
{

System.out.println("Inside A's m1 method");
}

}
class B extends A
{

void m1()
{

System.out.println("Inside B's m1 method");
}
void disp()
{

System.out.println("Inside Disp Method");
}

}

class Dispatch
{

public static void main(String args[])
{

A a = new A();
B b = new B();
A ref;
ref = a;
ref.m1();
ref = b;
ref.m1();
ref.disp();

}
}

Method Overriding – Dynamic Method Dispatch

• Dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at run time, rather than compile time.

• When an overridden method is called through a superclass reference,
Java determines which version(superclass/subclasses) of that method
is to be executed based upon the type of the object being referred to at
the time the call occurs. Thus, this determination is made at run time.

• At run-time, it depends on the type of the object being referred to (not
the type of the reference variable) that determines which version of
an overridden method will be executed.

Method Overriding – Dynamic Method Dispatch

class A
{

void m1()
{

System.out.println("Inside A's m1 method");
}

}

class B extends A
{

void m1()
{

System.out.println("Inside B's m1 method");
}

}

class C extends B
{
void m1()

{
System.out.println("Inside C's m1 method");

}
}

Method Overriding – Dynamic Method Dispatch

class Dispatch
{

public static void main(String args[])
{

A a = new A();
B b = new B();
C c = new C();
A ref;
ref = a;
ref.m1();
ref = b;
ref.m1();
ref=c;
ref.m1();
}

}

Is it Valid???

Can we override static method?

No, a static method cannot be overridden.
It is because the static method is bound
with class whereas instance method is
bound with an object.

Difference
Method Overloading Method Overriding

Method overloading is used to increase the
readability of the program.

Method overriding is used to provide the specific
implementation of the method that is already
provided by its super class.

Method overloading is performed within
class.

Method overriding occurs in two classes that
have IS-A (inheritance) relationship.

In case of method overloading, parameter
must be different.

In case of method overriding, parameter must be
same.

Method overloading is the example
of compile time polymorphism.

Method overriding is the example of run time
polymorphism.

In java, method overloading can't be
performed by changing return type of the
method only. Return type can be same or
different in method overloading. But you
must have to change the parameter.

Return type must be same or covariant in method
overriding.

DIY
Create a base class Fruit which has name ,taste and size as its attributes.

A method called eat() is created which describes the name of the fruit and

its taste.

Inherit the same in 2 other class Apple and Orange and override the eat()

method to represent each fruit taste.

DIY
Write a program to create a class named shape. It should contain 2 methods- draw() and

erase() which should print “Drawing Shape” and “Erasing Shape” respectively.

For this class we have three sub classes- Circle, Triangle and Square and each class override

the parent class functions- draw () and erase ().

The draw() method should print “Drawing Circle”, “Drawing Triangle”, “Drawing Square”

respectively.

The erase() method should print “Erasing Circle”, “Erasing Triangle”, “Erasing Square”

respectively.

Create objects of Circle, Triangle and Square in the following way and observe the

polymorphic nature of the class by calling draw() and erase() method using each object.

Shape c=new Circle();

Shape t=new Triangle();

Shape s=new Square();

• Abstract classes define a generalized form that will be shared by all
of its subclasses, so that each subclass can provide specific
implementations of such methods.

• In the above example area() for Figure being more generic we cannot
define it. At the level of rectangle or Circle we can give the formula for
area.

Figure

+ int area()

Rectangle

+ int area()

Circle

+ int area()

Abstract Classes

Motor Vehicle

+ int engine()

Car

+ int engine()

Bike

+ int engine()

• Often, you would want to define a superclass that declares the structure
of a given abstraction without providing the implementation of every
method

• The objective is to:

– Create a superclass that only defines a generalized form that will be
shared by all of its subclasses

– Leaving it to each subclass to provide for its own specific
implementations

– Such a class determines the nature of the methods that the
subclasses must implement

– Such a superclass is unable to create a meaningful implementation
for a method or methods

Abstract Classes

• The class Figure in the previous example is such a superclass.

– Figure is a pure geometrical abstraction

– You have only kinds of figures like Rectangle, Triangle etc.
which actually, are subclasses of class Figure

– The class Figure has no implementation for the area() method,
as there is no way to determine the area of a Figure

– The Figure class is therefore a partially defined class withno
implementation for the area() method
The definition of area() is simply a placeholder

Abstract Classes

• abstract method – It’s a method declaration with no definition

• a mechanism which shall ensure that a subclass must compulsorily
override such methods.

• Abstract method in a superclass has to be overridden by all its
subclasses.

• The subclasses cannot make use of the abstract method that they
inherit directly(without overriding these methods).

• These methods are sometimes referred to as subclasses responsibility
as they have no implementation’ specified in the superclass.

Abstract Method

• To use an abstract method, use this general form:

abstract type name(parameter-list);

• Abstract methods do not have a body

• Abstract methods are therefore characterized by the lack of the
opening and closing braces that is customary for any other normal
method

• This is a crucial benchmark for identifying an abstract class area
method of Figure class made Abstract.

public abstract int area();

Abstract Classes

• Any class that contains one or more abstract methods must also be
declared abstract
• It is perfectly acceptable for an abstract to implement a concrete

method.
• You cannot create objects of an abstract class
• That is, an abstract class cannot be instantiated with the new

keyword

• Any subclass of an abstract class must either implement all of the
abstract methods in the superclass or be itself declared abstract.

Abstract Classes

• There is no meaningful concept of area() foran undefined two-dimensional
geometrical abstraction such as a Figure

• The following version of the program declares area() as abstract inside
class Figure.

• This implies that class Figure be declared abstract, and all subclasses
derived from class Figure must override area().

Revised Figure Class – using abstract

abstract class Figure{
double dimension1;
double dimension2;
Figure(double x, double y)
{
dimension1 = x;
dimension2 = y;

}
abstract double area();

}

Improved Version

class Rectangle extends Figure{
Rectangle(double x, double y)
{

super(x,y);
}

double area(){
System.out.print("Area of rectangle is :");
return dimension1 * dimension2;

}
}

Improved Version

Improved Version

class Triangle extends Figure{
Triangle(double x, double y){
super(x,y); }
double area(){
System.out.print("Area for triangle is :");
return dimension1 * dimension2 / 2;
}

}

class FindArea{

public static void main(String args[]){

}

Figure fig;
Rectangle r = new Rectangle(9,5);

Triangle t = new Triangle(10,8);

fig = r;

System.out.println("Area
fig.area());

fig = t;

System.out.println("Area
fig.area());

}

of rectangle is :" +

of triangle is :" +

Improved version

What will be the output for the below code ?

class Gbase{

public abstract void testBase();

}

public class Sample extends GBase{

public static void main() {

Sample ob = new Sample();

ob.testBase();

}

}

Quiz

What will be the output for the below code ?

class abstract GBase{

public void testBase(){

System.out.println(“Hello World”);

}

}
public class Sample extends GBase{

public static void main() {

GBase ob = new GBase();

ob.testBase();

}

}

Quiz

DIY
1.1. Create a class called GeneralBank which acts as base class for all banks. This class has

functionality getSavingInterestRate and getFixedInterestRate methods, which return the

saving a/c rate of interest and fixed account rate of interest the specific bank gives. Since

GeneralBank cannot say what percentage which bank would give, make it abstract.

1.2. Create 2 subclasses of GeneralBank called ICICIBank and KotMBank. Override the

methods from base class. ICICI - Savings 4% Fixed 8.5% and KotMBank. - Savings 6%

Fixed 9%

1.3. Create a main method to test the above classes. Try one by one and absorb your

finding.

a) ICICIBank object reference instantiated with ICICIBank class.

b) KotMBank object reference instantiated with KotMBank class.

c) GeneralBank object reference instantiated with KotMBank class.

d) GeneralBank object reference instantiated with ICICIBank class.

DIY
Create an abstract class Compartment to represent a rail coach. Provide an

abstract function notice in this class.

Derive FirstClass, Ladies, General, Luggage classes from the compartment

class.

Override the notice function in each of them to print notice suitable to the

type of the compartment.

Create a class TestCompartment. Write main function to do the following:

Declare an array of Compartment of size 10.

Create a compartment of a type as decided by a randomly generated integer

in the range 1 to 4.

Check the polymorphic behavior of the notice method.

DIY
Create an abstract class Instrument which is having the abstract function play.

Create three more sub classes from Instrument which is Piano, Flute, Guitar.

Override the play method inside all three classes printing a message

“Piano is playing tan tan tan tan ” for Piano class

“Flute is playing toot toot toot toot” for Flute class

“Guitar is playing tin tin tin ” for Guitar class

You must not allow the user to declare an object of Instrument class.

Create an array of 10 Instruments.

Assign different type of instrument to Instrument reference.

Check for the polymorphic behavior of play method.

Use the instanceof operator to print that which object stored at which index of instrument

array.

• The final keyword used in context of behavioral restriction on:

– variables

– methods

– classes

• Using final on variables to make them behave as constants.

• When a variable is made final – it can be initialized only once either by

– Declaration and initialization

final int x=10;

– Using constructor

• System allows you to set the value only once; after which it can’t be
changed.

Final Keyword

Quiz
What will be the output for the below code ?

public class Sample {

final double pi;

public Sample()

{

pi = 3.14;

}

public Sample(double pi)

{

this.pi = pi;

}

}

public static void main() {
Sample ob = new Sample(22/7);

System.out.println(ob.pi);
}

• The final keyword used in context of behavioral restriction on:

– variables

– methods

– classes

• Using final on variables to make them behave as constants which we
have seen in earlier module.

• When a variable is made final – it can be initialized only once either by

– Declaration and initialization

final int x=10;

– Using constructor

• System allows you to set the value only once; after which it can’t be
changed.

Final Keyword

class GBase {

public final void display(String s)

{

System.out.println(s);

} }

class Sample extends GBase{

public void display(String s)

{

System.out.println(s);

}

public static void main(String args[]) {

Sample ob = new Sample();

ob.display(“TRY ME”);
} }

Output:

Compile Time Error : Cannot
override the final method from
GBase

Final Keyword

• Using final to Prevent Inheritance

– Sometimes you will want to prevent a class from being
inherited.

– This can be achieved by preceding the class declaration with
final.

– Declaring a class as final implicitly declares all of its methods
as final too.

– It is illegal to declare a class as both abstract and final since an
abstract class is incomplete by itself and relies upon its
subclasses to provide concrete and complete implementations.

Final Keyword

final class GBase {

public void display(String s)

{

System.out.println(s);

} }

class Sample extends GBase{ public void display(String s)

{

System.out.println(s);

}

public static void main(String args[]) {

Sample ob = new Sample(); ob.display(“TRY ME”);

} }

Output:

Compile Time Error : The type Sample
cannot subclass the final class
GBase

Final Keyword

What will be the output for the below code ?

class abstract GBase{

public final void testBase(){

System.out.println(“Hello World”);

}

}

Quiz

Introduction to Interfaces

An interface is a named collection of method declarations (without
implementations)

– An interface can also include constant declarations

– An interface is syntactically similar to an abstract class

– An interface is a collection of abstract methods and final variables

– A class implements an interface using the implements clause

Interface

• An interface defines a protocol of behavior

• An interface lays the specification of what a class is supposed to do

• How the behavior is implemented is the responsibility of each
implementing class

• Any class that implements an interface adheres to the protocol defined
by the interface, and in the process, implements the specification laid
down by the interface

Interface

Write code to
Calculate salary
for US employees

Write code to
Calculate salary

for India
employees

Rahul

Calculate_salary
IN: emp_id String(10)
OUT: salary float (6,2)

Interface ‘lif_salary’

class lcl_salary_US

Implements
lif_salary

class lcl_salary_IN

Implements
lif_salary

Example

• Interfaces allow you to implement common behaviors in different
classes that are not related to each other

• Interfaces are used to describe behaviors that are not specific to any
particular kind of object, but common to several kind of objects

Need for Interface

• Defining an interface has the advantage that an interface definition
stands apart from any class or class hierarchy

• This makes it possible for any number of independent classes to
implement the interface

• Thus, an interface is a means of specifying a consistent specification, the
implementation of which can be different across many independent and
unrelated classes to suit the respective needs of such classes

• Interfaces reduce coupling between components in your software

Need for Interface

• Java does not support multiple inheritance

• This is a constraint in class design, as a class cannot achieve the
functionality of two or more classes at a time

• Interfaceshelp us make up for this loss as a class can implement
more than one interface at a time

• Thus, interfaces enable you to create richer classes and at the same
time the classes need not be related

Need for Interface

• All the methods that are declared within an interface are always, by
default, public and abstract

• Any variable declared within an interface is always, by default, public
static and final

Interface members

What is the behavior which is common among the entities depicted in the pictures
above?

Yes..You are right. All of them can fly.

Requirement : You have to develop 3 classes, Bird, Superman and Aircraft with the
condition that all these classes must have a method called fly().

What is the mechanism, using which you can ensure that the method fly() is
implemented in all these classes?

An Abstract class or An Interface?

Quiz

• An interface is syntactically similar to a class

• It’s general form is:

public interface FirstInterface

{

int addMethod(int x, int y);

float divMethod(int m, int n);

void display();

int VAR1 = 10;

float VAR2 = 20.65;

}

Defining Interface

• A class can implement more than one interface by giving a comma- separated
list of interfaces

class MyClass implements FirstInterface{
public int addMethod(int a, int b){

return(a+b);
}
public float divMethod(int i, int j){

return(i/j);
}
public void display(){
System.out.println(“Variable 1 :” +VAR1);
System.out.println(“Variable 2 :” +VAR2);

}
}

12
5

Implementing Interfaces

Will the following code compile successfully ?

interface I1 {
private int a=100;
protected void m1();

}

class A1 implements I1 { public void m1()
{
System.out.println(“In m1 method”);
}

}

It will throw compilation errors.. Why?

Quiz

Will the following code compile successfully ?

interface I1 {
static int a=100; static void m1();

}

class A1 implements I1 { public void m1() {
System.out.println(“In m1 method”);
}

}

It will throw compilation error.. Why?

Quiz

• Software development is a process where constant changes are
likely to happen

• There can be changes in requirement, changes in design, changes in
implementation

• Interfaces support change

• Programming through interfaces helps createsoftware
solutions that are reusable, extensible, and maintainable

Applying Interfaces

interface IntDemo{

void display();

}

class classOne implements IntDemo{

void add(int x, int y){

System.out.println("The sum is :" +(x+y));

}

public void display(){

System.out.println("Welcome to Interfaces");

}

}

Applying Interfaces

class classTwo implements IntDemo{
void multiply(int i,int j, int k) {

System.out.println("The result:" +(i*j*k));
}
public void display(){
System.out.println("Welcome to Java ");
}

}
class DemoClass{
public static void main(String args[]) { classOne
c1= new classOne();
c1.add(10,20);
c1.display();
classTwo c2 = new classTwo();
c2.multiply(5,10,15);
c2.display();

}
}

Applying Interfaces

• When you create objects, you refer them through the class references.
For example :

– ClassOne c1= new classOne();

/*Here, c1 refers to the object of the class classOne. */

• You can also make the interface variable refer to the objects of the
class that implements the interface

• The exact method will be invoked at run time

• It helps us achieve run-time polymorphism

Interface References

class DemoClass{
public static void main(String args[]){
IntDemo c1= new classOne();
c1.display();
c1 = new classTwo();
c1.display();

}
}

Interface References

• Just as classes can be inherited, interfaces can also be inherited

• One interface can extend one or more interfaces using the keyword
extends

• When you implement an interface that extends another interface, you
should provide implementation for all the methods declared within the
interface hierarchy

Extending Interfaces

interface I1 {
int a=100;
void m1();

}

interface A1 extends I1 {

public void m2();
}

class Aimp implements I1 {
public void m1() {

System.out.println(“In m1 method”);
}
}

Extending Interfaces

Abstract Classes
• Abstract classes can have non-final

non-static variables.
• Abstract Classes can have abstract

methods as well as concrete
methods.

• You can declare any member of an
abstract class as private, default,
protected or public. Members can
also be static.

• Abstract class is extended by
another class using “extends”
keyword.

Interfaces
• Variables declared within an interface

are always static and final.
• Interfaces can have only method

declarations(abstract methods). You
cannot define a concrete method.

• Interface members are by default
public. You cannot have private or
protected members. Interface
methods cannot be static.

• An interface is “implemented” by a
java class using “implements”
keyword .

Abstract Classes v/s Interfaces

Abstract Classes
• An abstract class can extend

another class and it can implement
one or more interfaces.

• An abstract class can have
constructors defined within it.

• An abstract class cannot be
instantiated using “new”
Keyword

• You can execute(invoke) an
abstract class, provided it has
public static void main(String[]
args) method declared within it.

Interfaces
• An interface can extend one or more

interfaces but cannot extend a class.
It cannot implement an interface.

• You cannot define constructors
within an interface.

• An interface cannot be instantiated.
• You cannot execute an interface

Abstract Classes v/s Interfaces

