I YEAR M. TECH (MACHINE DESIGN) SECOND SEMESTER

17MEMD2T2 ADVANCED OPTIMIZATION TECHNIQUES Credits 4

Lecture: 4 periods/week

Internal assessment: 40 marks

Tutorial: - -

Semester end examination: 60 marks

COURSE OBJECTIVES:

To enable the student to

- Enumerate the fundamental knowledge of Linear Programming and Dynamic Programming problems.
- Learn classical optimization techniques and numerical methods of optimization.
- Know the basics of different evolutionary algorithms.
- Explain Integer programming techniques and apply different optimization techniques to solve various models arising from engineering areas.

COURSE OUTCOMES:

Upon completion of the subject, students will be able to:

- 1. Explain the fundamental knowledge of Linear Programming and Dynamic Programming problems.
- 2. Use classical optimization techniques and numerical methods of optimization.
- 3. Describe the basics of different evolutionary algorithms.
- 4. Enumerate fundamentals of Integer programming technique and apply different techniques to solve various optimization problems arising from engineering areas.

UNIT- I

LINER PROGRAMMING (L.P):

Revised Simplex Method, Duel simplex Method, Sensitivity Analysis

DYNAMIC PROGRAMMING (D.P):

Multistage decision processes. Concepts of sub optimization, Recursive Relation-calculus method, tabular method, LP as a case of D.P.

UNIT-II

CLASSICAL OPTIMIZATION TECHNIQUES:

Single variable optimization without constraints,

Multi variable optimization without constraints, multivariable optimization with constraints – method of Lagrange multipliers, Kuhn-Tucker conditions.

NUMERICAL METHODS FOR OPTIMIZATION:

Nelder Mead's Simplex search method, Gradient of a function, Steepest descent method, Newton's method.

UNIT-III

MODERN METHODS OF OPTIMIZATION:

GENETIC ALGORITHM (GA):

Differences and similarities between conventional and evolutionary algorithms, working principle, Genetic Operators- reproduction, crossover, mutation

GENETIC PROGRAMMING (GP):

Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, Random population generation.

Fuzzy Systems: Fuzzy set Theory, Optimization of Fuzzy systems

UNIT-IV

INTEGER PROGRAMMING:

Graphical Representation, Gomory's Cutting Plane Method, Balas' Algorithm for Zero–One Programming, Branch-and-Bound Method.

APPLICATIONS OF OPTIMIZATION IN DESIGN AND MANUFACTURING SYSTEMS:

Formulation of model- optimization of path synthesis of a four-bar mechanism, minimization of weight of a cantilever beam, general optimization model of a machining process, optimization of arc welding parameters, and general procedure in optimizing machining operations sequence.

Learning Resources

Text books:

1. Engineering Optimization (4th Edition) by S.S.Rao, New Age International,

References:

- 1. Optimization for Engineering Design by Kalyanmoy Deb, PHI Publishers
- 2. Genetic algorithms in Search, Optimization, and Machine learning D.E.Goldberg, Addison-Wesley Publishers
- 3. Operations Research by Hillar and Liberman, TMH Publishers
- 4. Optimal design Jasbir Arora, Mc Graw Hill (International) Publishers