Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada.

Department of ECM

3/4 B.Tech. SIXTH SEMESTER

Credits: 4

PVP12

EM6T6

CONTROL SYSTEMS

Lecture: 4 periods/week	Internal assessment	: 30 marks
Tutorial: 1 period /week	Semester end examination: 70 marks	

Course Objectives:

- To describe concept of feedback control and basic components of control systems and finding of TF for various systems and its analysis.
- Describe the various time domain and frequency domain plots for analysis and design of linear control systems.
- To know the stability of systems from transfer function and state space techniques.

Learning Outcomes:

At the end of this course, the Student will be able to

- Able to know open loop, closed loop control systems & know the concept of transfer function and its significance of analyzing systems.
- Know the stability analysis form time and frequency domain plots like Root locus, Bode, Polar, Nyquist Plots.
- Know the advance control techniques such as state space and its applications & concepts of controllability, observability.

UNIT – I

INTRODUCTION:Concepts of Control Systems- Classification of control systems, Different examples of control systems ,Open Loop and closed loop control systems, Feed-Back Characteristics, Effects of

feedback.

UNIT-II

MATHEMATICAL MODELLING OF CONTROL SYSTEMS:Concept of Transfer function, Mathematical models – Differential equations, Impulse Response – Finding of Transfer function for mechanical systems, electrical systems and electrical analogous of mechanical systems

UNIT III

TRANSFER FUNCTION REPRESENTATION: Transfer Function of DC Servo motor, AC Servo motor, Block diagram representation of systems considering electrical systems as examples -Block diagram algebra –Representation by Signal flow graph-Overall gain using mason's gain formula.

UNIT-IV

TIME RESPONSE ANALYSIS: Standard test signals - Time response of first order systems – Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications –Steady state error and error constants

UNIT - V

STABILITY ANALYSIS IN S-DOMAIN:The concept of stability – Routh's stability criterion, limitations of Routh's stability.

Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada.

Department of ECM

PVP12

Root Locus Technique: The root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT – VI

FREQUENCY RESPONSE ANALYSIS: Introduction, Frequency domain specifications-Bode plot and Stability Analysis, transfer function calculation from the Bode Diagram

UNIT – VII

STABILITY ANALYSIS IN FREQUENCY DOMAIN:Polar Plots, Nyquist Plots and Stability Analysis.

UNIT – VIII

STATE SPACE ANALYSIS OF CONTINUOUS SYSTEMS:Concepts of state, state variables and state model, derivation of state models for mechanical, electrical systems, TF to SS and SS to TF conversion- Solution of state Equations- State Transition Matrix and it's Properties –Concepts of Controllability and Observability

Learning resources

TEXT BOOKS:

- 1. Automatic Control Systems 8th edition- by B. C. Kuo 2003- John wiley and son's.,
- 2. Control Systems Engineering by I. J. Nagrath and M. Gopal, New Age International(P) Limited, Publishers, 2nd edition.

REFERENCE BOOKS:

- 1. Modern Control Engineering by Katsuhiko Ogata Prentice Hall of India Pvt. Ltd., 3rd edition, 1998.
- 2. Control systems by A. Nagoorkani RBA Publications, 2 nd edition
- 3. Control Systems Engg. by NISE 3rd Edition John wiley
- 4. "Modelling & Control Of Dynamic Systems" by Narciso F. Macia George J. Thaler, Thomson Publishers