Department of ECM PVP12

3/4 B.Tech. FIFTH SEMESTER IC APPLICATIONS

EM5T1 IC APPLICATIONS Credits: 4

Lecture: 4 periods/week

Tutorial: 1 period /week

Internal assessment : 30 marks
Semester end examination: 70 mark

Course Objectives:

 To enable the students to understand the fundamentals of integrated circuits and designing electronic circuits using it

Learning Outcomes:

- The student will gain the basics of linear integrated circuits and Digital integrated circuits and its applications.
- The student will able to design simple electronic & filter circuits for particular application.
- The student understands analog to digital converters (ADC), and digital to analog converters (DAC)
- The student will gain knowledge in designing a stable voltage regulators and understands the applications of PLL and special ICs and Study the characteristics and performance of digital circuits built using various MOS technologies.

UNIT I

Integrated Circuits: Classification, chip size and circuit complexity, basic information of Opamp, ideal and practical Op-amp, 741 op-amp and its features, modes of operation-inverting, non-inverting, differential, Op-amp characteristics - DC and AC.

UNIT II

OP-AMP Applications: Basic application of Op-amp, instrumentation amplifier, ac amplifier, V toI and I to V converters, multipliers and dividers, Differentiators and Integrators, Comparators, Schmitt trigger, Multivibrators.

Unit III

Active Filters : Introduction, 1st order LPF, HPF filters. Band pass, Band reject and all pass filters.

Oscillators: Oscillator types and principle of operation - RC, Wien and quadrature type, waveform generators - triangular, sawtooth, square wave .

UNIT IV

Timers: Introduction to 555 timer, functional diagram, monostable and astable operations.

D-A Converters: Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC.

A-D Converters: Different types of ADCs - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, specifications of converters.

Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada.

Department of ECM PVP12

UNIT V

CMOS Logic: Introduction to logic families, CMOS logic, CMOS steady state electrical behaviour, CMOS dynamic electrical behaviour, CMOS logic families.

UNIT VI

Combinational Logic Design: Ripple Adder, Look Ahead Carry Generator, Binary Parallel Adder, n-Bit Parallel Subtractor, Binary Adder-Subtractor, coders, decoders, multiplexers and demultiplexers, ALUs, Combinational multipliers, Barrel Shifter.

UNIT VII

Sequential Logic Design: Introduction, The Basic Bistable Element, Latches, and flip-flops, Flip-Flop Conversions, SSI Latches and Flip-Flops, Counters, Design of Counters using Digital ICs, Counter applications, Design considerations of the above sequential logic circuits with relevant Digital ICs.

UNIT VIII

Sequential Circuits: MSI Registers, Shift Registers, Modes of Operation of Shift Registers, Universal Shift Registers, MSI Shift Registers, shift registers & applications.

Memories : ROM architecture, types & applications, RAM architecture, Static & Dynamic RAMs, synchronous DRAMs.

Learning resources

Text Books:

- 1. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 1987.
- 2. Digital Design principles & practices- John F. Wakerly, 3rd Ed., 2010.

Reference Books:

- 1. Linear Integrated Circuits –D. Roy Chowdhury, New Age International (p) Ltd, 2nd Ed.,2003.
- 2. Fundamentals of digital design –Anand kumar, PHI,11th Ed.2006.
- 3. Operational Amplifiers & Linear Integrated Circuits R.F. Coughlin & Fredrick F. Driscoll, PHI, 1977.
- 4. Digital Fundamentals Floyd and Jain, Pearson Education, 8th Edition, 2005.