Course Code	22MEMD2T6B	Year	Ι	Semester	II
Course	Programme	Dronch	ME	Course Tune	Theory
Category	Elective	Dranch	NIE	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	
Continuous		Semester			
Internal	40	End	60	Total Marks:	100
Evaluation:		Evaluation:			

MECHATRONICS

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Understand the fundamentals of mechatronics systems in a synergistic framework	L2	1
CO2	Select appropriate sensors and transducers to devise an instrumentation system for collecting information	L3	2
CO3	Design a control system for effective functioning of Mechatronics systems using digital electronics, microprocessors, microcontrollers and Programmable logic controllers	L4	3
CO4	Determine the performance of a Mechatronics system	L3	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2	1	1				1				2	1
CO 2	3	3	2	1	1				1				2	1
CO 3	3	3	2	1	1				1				2	1
CO 4	3	3	2	1	1				1				2	1

Syllabus					
Unit	Contents				
		СО			
1	OVERVIEW OF MECHATRONICS: History of Mechatronics, Scope and Significance of Mechatronics systems, elements of mechatronics systems, needs and benefits of mechatronics in manufacturing. CASE STUDIES: Design of pick and place robot, Barcode, Washing machine, Car engine management system, automated manufacturing system, Automatic camera, Automatic parking system, Safety devices and systems.	CO1			
2	SENSORS: Classification of sensors basic working principles, Displacement	CO2			

	Sancer Linear and retery notantiameters LVDT and DVDT incremental and	
	sensor -Linear and forary potentionneters, L v D1 and K v D1, incrementar and	
	absolute encoders. Strain gauges. Force/Torque –Load cens. Temperature –	
	I nermocouple, Bimetallic Strips, I nermistor, RTD, Accelerometers, velocity	
	sensors – Tachometers, Proximity and Range sensors –Eddy current sensor,	
	ultrasonic sensor, laser interferometer transducer, Hall Effect sensor, inductive	
	proximity switch. Light sensors –Photodiodes, phototransistors, Flow sensors	
	-Ultrasonic sensor, laser Doppler anemometer tactile sensors -PVDF tactile	
	sensor, micro-switch and reed switch Piezoelectric sensors, vision sensor.	
	ACTUATORS: Electrical Actuators: Solenoids, relays, diodes, Thyristors,	
	Triacs, BJT, FET, DC motor, Servo motor, BLDC Motor, AC Motor, stepper	
	motors Hydraulic & Pneumatic devices – Power supplies, valves, cylinder	
	sequencing Design of Hydraulic & Pneumatic circuits Piezoelectric	
	actuators. Shape memory alloys	
	DIGITAL ELECTRONICS: Number systems BCD codes and arithmetic	<u>CO3</u>
	Gray codes self complimenting codes Error detection and correction	005
	principles Boolean functions using Karnough man Design of combinational	
	principles. Boolean functions using Kainaugh map, Design of combinational	
	circuits, Design of arithmetic circuits. Design of Code converters, Encoders	
•	and decoders. SIGNAL CONDITIONING: Operational amplifiers, inverting	
3	amplifier, differential amplifier, Protection, comparator, filters, Multiplexer,	
	Pulse width Modulation Counters, decoders. Data acquisition – Quantizing	
	theory, Analog to digital conversion, digital to analog conversion.	
	CONTROLLERS: Classification of control systems, Feedback, closed loop	
	and open loop systems, Continuous and discrete processes, control modes,	
	Two step Proportional, Derivative, Integral, PID controllers.	
	PLC PROGRAMMING: PLC Principles of operation PLC sizes PLC	CO4
	hardware components I/O section Analog I/O section Analog I/O modules,	
4	digital I/O modules CPU Processor memory module Programming. Ladder	
	Programming, ladder diagrams, timers, internal relays and counters, data	
	handling, analogue input and output. Application on real time industrial	
	automation systems BASIC SYSTEM MODELS & ANALYSIS: Modelling	
	of one and two degrees of freedom Mechanical Electrical Fluid and thermal	
	systems Block diagram representations for these systems Dynamic	
	Posponsos of System: Transfor function Modelling Dynamic systems first	
	responses of System. Transfer function, wodening Dynamic systems, first	
	order systems, second order systems.	

Learning Resources

Text Book(s):

- 1. Mechatronics, (5th edition) by W. Bolton, Addison, Wesley Longman Ltd, 2010
- 2. Introduction to Mechatronics and Measurement systems (4thedition) by Alciatore David G & Histand Michael B, Tata McGraw Hill, 2006

References:

1. Introduction to Robotics Analysis, Systems (2nd edition), Applications by Saeed B Niku, Pearson Education India, PHI, 2003.

2. Mechatronics System Design (3rdedition) by Devdas Shetty& Richard Kolk, PWS Publishing, 2009.