Course Code	22MEMD1T6A	Year	Ι	Semester	Ι
Course Category	Programme Elective	Branch	ME	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Nil
Continuous		Semester			
Internal	40	End	60	Total Marks:	100
Evaluation:		Evaluation:			

THEORY OF ELASICITY AND PLASTICITY

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Demonstrate the application of plane stress and plane strain in a given situation.	L3	1
CO2	Understand the two dimensional problems in polar coordinate system.	L3	2
CO3	Apply stress-strain relations for linearly elastic solids, and Torsion	L3	3
CO4	Demonstrate the ability to analyze the structure using plasticity.	L3	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2				2			1		2	3	1
CO 2	3	3	2				2			1		2	3	1
CO 3	3	3	2				2			1		2	3	1
CO 4	3	3	2				2			1		2	3	1

Syllabus					
Unit	Contents	Mapped CO			
1	 Introduction: Elasticity – notation for forces and stresses – components of stresses – components of strain – stress strain relationship – Generalized Hooke's law. Plane stress and plane strain analysis – plane stress – plane strain – differential equations of equilibrium – boundary conditions – compatibility equations – stress function – boundary condition. 	CO1			

2	Two dimensional problems in rectangular coordinates – solution by polynomials – Saint Venant's principle – determination of displacements – bending of simple beams – application of corier eries or two dimensional problems – gravity loading. Two dimensional problems in polar coordinates – stress distribution symmetrical about an axis – pure bending of curved bars – strain components in polar coordinates – displacements for symmetrical stress distributions – simple symmetric and symmetric problems – general solution	CO2
	of two – dimensional problem in polar coordinates – application of general solution in polar coordinates.	
3	 Torsion of Prismatic Bars: torsion of prismatic – bars with elliptical cross sections – other elementary solution – membrane analogy – torsion of rectangular bars – solution of torsion problems by energy method – use of soap films in solving torsion problems – hydro dynamical analogies – torsion of shafts, tubes, bars etc. Bending of Prismatic Bars: Stress function – bending of cantilever – circular cross section – elliptical cross section – rectangular cross section – bending problems by soap film method – displacements. 	CO3
4	Plasticity: Physical Assumptions – Yield criteria – Failure theories – Applications of thick cylinder – Plastic stress strain relationship. Elasto – plastic problems in bending and torsion.	CO4

Learning Resources

Text Book(s):

- 1. Theory of Elasticity (third edition) by Timeshanko, McGrawhill Publications, 2010.
- 2. Theory of Plasticity (third edition) by J.Chakarbarthy, McGrawhill Publications, 2006.

References:

- 3. Theory of Elasticity by Y.C.Fung.
- 4. Theory of Elasticity by Gurucharan Singh
- 5. Theory of Elasticity by Sadhu Singh, Khanna Publishers, New Delhi