Course Code	22MEMD1T5D	Year	I Semester		Ι
Course Category	Programme Elective	Branch	ME	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Fluid Mechanics
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100

COMPUTATIONAL FLUID DYNAMICS

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Describe governing flow equations for a fluid dynamics problem.	L3	1
CO2	Classify the Partial Differential Equations (PDEs) and various Discretization techniques.	L3	2
CO3	Apply the basic knowledge of Computational Fluid Dynamics (CFD) to Nozzle flow problems and Incompressible flow problems.	L3	3
CO4	Apply the basic knowledge of CFD to Heat Transfer problems.	L3	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	3	3	3							3	3	2
CO 2	3	3	3	3	3							3	3	2
CO 3	3	3	3	3	3							3	3	2
CO 4	3	3	3	3	3							3	3	2

Syllabus					
Unit	Contents	Mapped CO			
	INTRODUCTION	CO1			
1	Computational Fluid Dynamics as a Research and Design Tool, Applications of Computational Fluid Dynamics,				

	GOVERNING EQUATIONS OF FLUID DYNAMICS:	
	Introduction, Models of the Flow, Substantial Derivative, Divergence of Velocity, Continuity Equation, Momentum Equation and Energy Equation, Conservation and Non-conservation forms of Governing Flow Equations.	
	PARTIAL DIFFERENTIAL EQUATIONS – ITS MATHEMATICAL BEHAVIOR	CO2
	Introduction, Classification of Quasi-Linear Partial Differential Equations, Eigen Value Method, Hyperbolic Equations, Parabolic Equations, Elliptic Equations.	
2	DISCRETIZATION	
	Introduction, Finite Differences, Difference Equations, Explicit and Implicit Approaches, Errors and Stability Analysis, Grid Generation.	
	TRANSFORMATION OF GRIDS	
	Transformation of Equations, Metrics and Jacobians, Transformed version of Governing Flow Equations.	
	CFD TECHNIQUES	CO3
3	Introduction, The Lax Wendroff Technique, MacCormack's Technique, The Alternation-Direction Implicit (ADI) Technique, Pressure Correction Technique.	
	CFD Application to Nozzle Flow Solution to Subsonic-Supersonic Isentropic flow using MacCormack's Technique	
	CFD Application to Incompressible Couette Flow Solution by using Pressure Correction method.	
	NUMERICAL METHODS IN HEAT CONDUCTION	CO4
4	One-Dimensional Steady Heat Conduction in a plane wall and boundary conditions; Two-Dimensional Steady Heat Conduction and boundary conditions; Transient Heat Conduction in a plane wall; Two-Dimensional Transient Heat Conduction in a rectangular coordinates.	

Learning Resources

Text Book(s):

1. John. D. Anderson, Computational fluid dynamics - Basics with applications, McGraw Hill

2. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher. Computational Fluid Mechanics and Heat Transfer. NewYork: Hemisphere, 1984.

References:

1. Suhas V. Patankar, Numerical heat transfer and fluid flow, Butter-worth Publishers.

2. T. K Sengupta, Fundamentals of Computational Fluid Dynamics, University Press