COMPUTATIONAL METHODS

Course Code	22MEMD1T5A	Year	Ι	Semester	Ι
Course Category	Programme Elective	Branch	ME	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Nil
Continuous		Semester			
Internal	40	End	60	Total Marks:	100
Evaluation:		Evaluation:			

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Solve the linear and non linear system of equations using numerical methods and understand the concept of numerical integration.	L3	1
CO2	Solve the boundary value and characteristic value problems and using regression analysis fit an approximation of functions.	L3	2
CO3	Find the temperature distribution in a rectangular plates using finite difference method.	L3	3
CO4	Find the temperature distribution in a rod and solve the wave equation by finite difference method.	L3	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	3		1		1							1
CO 2	3	3	3		1		1							1
CO 3	3	3	3		1		1							1
CO 4	3	3	3		1		1							1

Sy	llabus	
Unit	Contents	Mapped CO
1	INTRODUCTION TO NUMERICAL METHODS APPLIED TO ENGINEERING PROBLEMS:	CO1
	Examples, solving Sets of equations – Matrix notation – Determinants and inversion – Iterative methods –Relaxation methods – System of non-linear	

	equations.							
	NUMERICAL INTEGRATION: Newton-Cotes integration formulas – Simpson's rules, Gaussian quadrature. Adaptive integration.							
	BOUNDRY VALUE PROBLEMS AND CHARACTERISTIC VALUE PROBLEMS:							
2	Shooting method – Solution through a set of equations – Derivative boundary conditions – Rayleigh – Ritz method –Characteristic value problems.							
	CURVE FITTING AND APPROXIMATION OF FUNCTIONS: Least square approximation fitting of non- linear curves by least squares –regression analysis- multiple linear regression, non linear regression.							
3	NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS: Laplace's equations – Representations as a difference equation – Iterative methods for Laplace's equations – poisson equation – Examples – Derivative boundary conditions – Irregular and non – rectangular grids – Matrix patterns, sparseness – ADI method – Finite element method.	CO3						
	PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS:							
4	Explicit method- Crank-Nickelson method – Derivative boundary condition, Stability and convergence criteria– Finite element for heat flow.							
	HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS:							
	Solving wave equation by finite differences- stability of numerical method – method of characteristics-wave equation in two space dimensions.							

Learning Resources

Text Book(s):

1. Numerical Methods for Engineers by Steven C.Chapra, Raymond P.Canale, Tata

Mc- Graw hill.

2. Applied numerical analysis by Curtis F.Gerald, partick.O.Wheatly, Addison- wesley, 1989.

3. Numerical methods (2nd edition) by Douglas J..Faires, Riched Burden, Brooks/cole publishing , 1998.

References:

1. Numerical mathematics and computing (4th edition) by Ward cheney & David Kincaid, Brooks/cole publishing 1999.

2. Mathematical Methods for Physics and Engineering by Riley K.F.M.P.Hobson &Bence S.J, Cambridge University press, 1999.