GEOMETRIC MODELLING

Course Code	22MEMD1T4	Year	I	Semester	I
Course Category	Programme Core	Branch	ME	Course Type	Theory
Credits	4	L-T-P	$4-0-0$	Prerequisites	Nil
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100

Course outcomes: At the end of the course, the student will be able to:

CO	Statement	BTL	Units
CO 1	Express types of manipulation techniques, mathematical representation schemes for various entities used in geometric modeling.	L 3	1
CO 2	Formulate algebraic and geometric form of a cubic spline, Bezier, and B-Spline curves and their derivatives.	L 3	2
CO 3	Develop parametric representation of analytic and synthetic surfaces.	L 3	3
CO 4	Distinguish various schemes used for construction of solid models.	L 3	4

Contribution of Course outcomes towards achievement of programme outcomes $\boldsymbol{\&}$
Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2	2	3		3	2		1	1			2	3	2
CO 2	2	2	3		3	2		1	1			2	3	2
CO 3	2	2	3		3	2		1	1			2	3	2
CO 4	2	2	3		3	2		1	1			2	3	2

Syllabus				Contents	Mapped CO
Unit	TRANSFORMATIONS IN GEOMETRIC MODELING: Introduction, Translation, Scaling, Reflection, Rotation in 2D and 3D. Homogeneous				
I	representation of transformation, Concatenation of transformations. CUBIC SPLINES: Definition, Explicit and implicit equations, parametric equations. Algebraic and geometric form of cubic spline, tangent vectors, parametric space of a curve, blending functions, four-point form, reparametrization, truncating and subdividing of curves.	CO1			

	BEZIER CURVES: Bezier curve definition, matrix representation of Bezier curves, Bernstein basis, equations of Bezier curves, properties, derivatives, increasing the flexibility of Bezier curves, degree elevation. B-SPLINE CURVES: B-Spline curve definition, properties, convex hull properties of Bspline, knot vector, B-spline basis function, B-spline curve control, open, periodic, non-uniform B-spline curves, matrix formulation of B- spline curve, end conditions of periodic Bspline curve, equations, and derivatives.	CO2
III	INTRODUCTION: Surface Models, Surface Representation. Parametric Representation of Analytic Surfaces - Plane Surface, Ruled Surface, Surface of Revolution, Tabulated Cylinder. Parametric Representation of Synthetic Surfaces - Hermit Bi-cubic Surface, Bezier Surface, B-Spline Surface, Coons Surface, Gaussian curvature.	CO3
	SOLIIDS IN GEOMETRIC MODELING FOR DESIGN: Solid entities, Boolean operations, Topological aspects, Invariants. B-rep of Solid Modelling, CSG approach of solid modelling. Popular modeling methods in CAD.	CO4

Learning Resources

Text Book(s):

1. Geometric Modeling (1st edition) by Micheal. E. Mortenson, McGraw Hill Publishers, First edition
2. Elements of Computer Graphics (1st edition) by Roger \& Adams Tata McGraw Hill. First edition

References:

1. An Introduction to Nurbs with Historical perspective (1st edition) by David F Rogers. First edition
