PRESSURE VESSEL DESIGN

Course Code	22MEMD1T2	Year	Ι	Semester	Ι
Course Category	Programme core	Branch	ME	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Design of Machine Elements
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Understanding of the fundamental engineering processes and principles of pressure equipment design.	L2	1,2
CO2	Understand the suitable Pressure vessel materials and their environment.	L2	3,4
CO3	Apply vessel design codes in influencing vessel design features, stresses, materials and inspection/testing requirements.	L3	3
CO4	Design pressure vessels and various parts of vessels	L4	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2	1	1			2			1		2	3	2
CO 2	3	3	1	1			2			1		2	3	2
CO 3	3	3	1	1			2			1		2	3	2
CO 4	3	3	1	1			2			1		2	3	2

Syllabus					
Unit	Unit Contents				
1	INTRODUCTION: Materials-shapes of Vessels-stresses in cylindrical, spherical and arbitrary, shaped shells. Cylindrical Vessels subjected to internal pressure, wind load, bending and torque-dilation of pressure vessels-conical and tetrahedral vessels.				

	THEODY OF THICK CVI INDERS.						
	THEORY OF THICK CYLINDERS:						
	Shrink fit stresses in built up cylinders-auto frettage of thick cylinders. Thermal stresses in Pressure Vessels.						
	THEORY OF RECTANGULAR PLATES:	CO1					
	Pure bending- different edge conditions.						
2	THEORY OF CIRCULAR PLATES:						
2	Simple supported and clamped ends subjected to concentrated and uniformly						
	distributed loads-stresses from local loads. Design of dome bends, shell						
	connections, flat heads and cone openings.						
	PRESSURE VESSEL MATERIALS AND THEIR ENVIRONMENT:	CO2,					
	Introduction, ductile material tensile tests, structure and strength of steel,	CO3					
	Leuder's lines, determination of stress patterns from plastic flow observations,	000					
	behaviour of steel beyond the yield point, effect of cold work or strain						
3	hardening on the physical properties of pressure vessel steels, fracture types in						
5	tension, toughness of materials, effect of neutron irradiation of steels, fatigue						
	of metals, fatigue crack growth, fatigue life prediction, cumulative fatigue						
	damage, stress theory of failure of vessels subject to steady state and fatigue						
	conditions.	~ ~ ~					
	STRESS CONCENTRATIONS:	CO2,					
	Influence of surface effects on fatigue, effect of the environment and other	CO4					
	factors on fatigue life, thermal stress fatigue, creep and rupture of metals at						
4	elevated temperatures, hydrogen embrittlement of pressure vessel steels,						
4	brittle fracture, effect of environment on fracture toughness, fracture						
	toughness relationships, criteria for design with defects, significance of						
	fracture mechanics evaluations, effect of warm prestressing on the ambient						
	temperature toughness of pressure vessel steels.						
	r concernent restrictions						

Learning Resources

Text Book(s):

- 1. Theory and design of modern Pressure Vessels by John F. Harvey, Van nostrand reihold company, New York, 1974
- 2. Pressure Vessel Design and Analysis by Bickell, M.B.Ruizcs, 1998.

References:

- 1. Process Equipment design- Beowll & Yound Ett, John Wiley & Sons Inc, 1959.
- 2. Indian standard code for unfired Pressure vessels IS:2825, 1969.
- 3. Pressure Vessel Design Hand Book, Henry H.Bednar, P.E., C.B.S.Publishers, New Delhi, 1989.