Course Code	22MEMD1T1	Year	Ι	Semester	Ι
Course Category	Programme core	Branch	ME	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Mechanics of Solids
Continuous Internal Evaluation:	40	Semester End Evaluation:	60	Total Marks:	100

ADVANCED MECHANICS OF SOLIDS

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Understand the concept of theory of elasticity equations for solving various engineering problems.	L2	1
CO2	Study the failure modes of different structural members.	L3	2
CO3	Compute the shear centre for various sections and calculate the bending stresses and deflections of beams under unsymmetrical loading.	L3	3
CO4	Determine the bending stresses in curved beams and stresses in axisymmetric rotating members.	L3	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	3	2				2			1		2	3	2
CO 2	3	3	2				2			1		2	3	2
CO 3	3	3	2				2			1		2	3	2
CO 4	3	3	2				2			1		2	3	2

Syllabus						
Unit	Contents	Mapped CO				
1	Theories of stress and strain : Definition of stress at a point, stress notation, stress in arbitrary plane, stress transformation, principal stresses, strain notation, strain displacement relation, strain compatibility relations, principal strains.	CO 1				

	Yield Criteria: General concepts, maximum Principal Stress Criterion, Maximum Principal Strain Criterion, Strain Energy Density Criterion, Maximum Shear Stress Criterion, Distortion Energy Density Criterion	
2	Failure criteria : Modes of failure, Failure criteria, Excessive deflections, Yield initiation, fracture, Progressive fracture, (High Cycle fatigue for number of cycles $N > 10^6$, buckling. Application of energy methods : Elastic deflections and statically indeterminate members and structures: Principle of stationary potential energy, Castiglione's theorem on deflections, Castiglione's theorem on deflections for linear load deflection relations, deflections of statically determinate structures.	CO 2
3	 Shear Center: Bending axis and shear center-shear center for axi-symmetric and unsymmetrical sections. Unsymmetrical Bending: Bending stresses in Beams subjected to Nonsymmetrical bending, Deflection of straight beams due to nonsymmetrical bending. 	CO 3
4	 Curved Beam Theory: Winkler Bach formula for circumferential stress, Limitations, Location of Neutral axis of cross section, stresses in crane hooks, closed ring subjected to concentrated load-stresses in chain links. Axi-Symmetric Problems: Rotating Discs, Flat discs, Discs of uniform thickness, Discs of uniform strength. 	CO 4

Learning Resources

Text Book(s):

1. Advanced Mechanics of Materials, (6th Edition) by Arthur P. Boresi and Richard J. Schmidt, Wiley India (P.) Ltd, New Delhi, 2012.

References:

- 1. Advanced strength of materials by Den Hortog J.P., Dover Publications, 1988
- 2. Advanced Mechanics of Solids by L.S Srinath, Mcgraw Hill Education, 2010.
- 3. Mechanics of Materials (10th Edition) by B.C Punmia, Ashok Kumar Jain and Arun Kumar Jain, Laxmi Publications, 2015.
- 4. Strength of Materials (Revised Edition) by R. K. Rajput, S Chand & Pvt. Ltd., 2014.
- 5. Strength of Materials, (11th Edition) by Dr. Sadhu Singh, Khanna Publishers, New Delhi, 2007.