PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous)
KANURU, VIJAYAWADA-520007

I B.Tech - I Sem CSE (AI\&ML)
DIGITAL LOGIC DESIGN

Course Code	20ES1105	Year	I	Semester	I
Course Category	Engineering Sciences	Branch	CSE(AI\&ML)	Course Type	Theory
Credits	3	L-T-P	$3-0-0$	Prerequisites	Elementary Mathematics
Continuous Internal Evaluation	30	Semester End Examination	70	Total Marks:	100

Course Outcomes		
Upon successful completion of the course, the student will be able to	$\mathbf{L 2}$	
$\mathbf{C O 1}$	Understand the basic concepts of digital circuits.	$\mathbf{L 3}$
$\mathbf{C O 2}$	Apply minimization techniques to simplify Boolean expressions.	$\mathbf{L 3}$
$\mathbf{C O 3}$	Apply the principles of digital electronics to design combinational and sequential circuits.	$\mathbf{L 4}$
$\mathbf{C O 4}$	Analyze the functionality of combinational circuits and sequential circuits.	

Contribution of Course Outcomes towards achievement of Program Outcomes \& Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	2													
CO3	3													
CO4		2										1		

Syllabus				Mapped CO's
Unit No	Contents			
I	DigitalSystemsandBinaryNumbers: Digital Systems, Binary Numbers, Number BaseConversions, Octal and Hexadecimal Numbers, Complements of Numbers, Arithmetic Addition and Subtraction, Binary codes - BCD, Excess-3, Gray codes and Binary Logic.	CO1		
II	BooleanAlgebra and Logic Gates: Introduction, Basic Definitions, Axiomatic definition of Boolean Algebra, Basictheorems and properties of BooleanAlgebra,Boolean functions, Canonical and Standard Forms Gate-LevelMinimization: Introduction, Map Method-Three variable K-Map, Four Variable K-Map, Product of Sums Simplification, Don't Care Conditions	CO1,CO2		
III	CombinationalLogic: Introduction, Combinational Circuit, Analysis Procedure,Design Procedure,Half adder \& subtractor, Full adder \& subtractor, Binary adder, Encoders, Decoders, Multiplexers,Demultiplexers.	CO1, CO3,		
CO4				

Learning Resources

Text Books

1. Digital Design, M. Morris Mano, Michael D.Ciletti, Fifth Edition, 2013, Pearson.

References

1. Switching Theory and Finite Automata, Zvi. Kohavi, Niraj K. Jha, Third Edition, 2010, Cambridge, University Press.
2. Fundamentals of Digital circuits, A. Anand Kumar, ThirdEdition, 2013, PHI.

e-Resources \& other digital material

1. https://nptel.ac.in/courses/106/108/106108099/http://nptel.ac.in/courses/117106086/1
2. https://nptel.ac.in/courses/117/105/117105080/
3. https://www.udemy.com/course/digital-electronics-logic-design/
4. https://learnabout-electronics.org/Digital/dig20.php
5. https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
6. https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/
