PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous)
KANURU, VIJAYAWADA-520007

I B.Tech – I Sem CSE (DATA SCIENCE) DIGITAL LOGIC DESIGN

Course Code	20ES1105	Year	ear I Semester		Ι	
Course Category	Engineering Sciences	Branch	CSE(Data Science)	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Elementary Mathematics	
Continuous Internal Evaluation	30	Semester End Examination	70	Total Marks:	100	

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of digital circuits.				
CO2	Apply minimization techniques to simplify Boolean expressions.	L3			
CO3	Apply the principles of digital electronics to design combinational and sequential circuits.	L3			
CO4	Analyze the functionality of combinational circuits and sequential circuits.	L4			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)												
	PO1	PO2	PO3							PO10		PSO1	PSO2
CO1	3												
CO2	2												
CO3	3												
CO4		2									1		

	Mapped CO's	
Unit No	Contents	Mapped CO's
I	DigitalSystemsandBinaryNumbers: Digital Systems, Binary Numbers, Number BaseConversions, Octal and Hexadecimal Numbers, Complements of Numbers, Arithmetic Addition and Subtraction, Binary codes - BCD, Excess-3, Gray codes and Binary Logic.	CO1
Ш	Boolean Algebra and Logic Gates: Introduction, Basic Definitions, Axiomatic definition of Boolean Algebra, Basictheorems and properties of Boolean Algebra, Boolean functions, Canonical and Standard Forms Gate-LevelMinimization: Introduction, Map Method-Three variable K-Map, Four Variable K-Map, Product of Sums Simplification, Don't Care Conditions	CO1,CO2
III	CombinationalLogic: Introduction, Combinational Circuit, Analysis Procedure, Design Procedure, Half adder & subtractor, Full adder & subtractor, Binary adder, Encoders, Decoders, Multiplexers, Demultiplexers.	CO1, CO3, CO4
IV	SequentialLogic:Introduction Storage Elements: Latches –SR Storage Elements: Flip Flops–SR, JK, D and T Flip Flops - Characteristic tables, Characteristic equation, Excitation tables, Conversions of Flip-flops	CO1, CO3, CO4
V	RegistersandCounters: Registers, Shift Registers -Serial Transfer, Serial Addition, Universal Shift Register Ripple Counters-Binary Ripple Counter, BCD Ripple Counter Synchronous Counters-Binary Counter, Up–Down Binary Counter, and BCD Counter.	CO1, CO3, CO4

	Learning Resources
Text Books	

1. Digital Design, M. Morris Mano, Michael D.Ciletti, Fifth Edition, 2013, Pearson.

References

- 1. Switching Theory and Finite Automata, Zvi. Kohavi, Niraj K. Jha, Third Edition, 2010, Cambridge, University Press.
- 2. Fundamentals of Digital circuits, A. Anand Kumar, ThirdEdition, 2013, PHI.

e-Resources & other digital material

- 1. https://nptel.ac.in/courses/106/108/106108099/http://nptel.ac.in/courses/117106086/1
- 2. https://nptel.ac.in/courses/117/105/117105080/
- 3. https://www.udemy.com/course/digital-electronics-logic-design/
- 4. https://learnabout-electronics.org/Digital/dig20.php
- 5. https://www.tutorialspoint.com/digital_circuits/digital_circuits_logic_gates.htm
- 6. https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/