OPERATIONS RESEARCH

Course code	Course code 20ME2701A Year		IV	Semester	I	
Course category	Open Elective	Branch	Common to all	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	-	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the basics of linear programming, transportation, queueing, sequencing of jobs, replacement, inventory and simulation problems	L2				
CO2	CO2 Apply linear programming, transportation and assignment models to solve real life problems					
CO3	Apply Sequencing, queueing, Game and Replacement theories to solve problems	L3				
CO4	Apply knowledge of inventory control and simulation to solve practical industrial problems	L3				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO ₁	. 1	V								V	V		V	$\sqrt{}$
CO ₂	√ √									V	V		V	√
CO ₃	√									V	V		V	$\sqrt{}$
CO ₄	√ √									V	V			V

	Syllabus					
UNIT No.	Contents					
I	 Introduction to Operations Research: History, definition, operations research models, phases of implementing operations research in practice, applications. Linear Programming: Introduction, formulation, graphical solution, simplex method, artificial variable techniques – Big M and two-phase methods, duality principle. 	CO1 CO2				
П	Transportation : Formulation, initial feasible solution, optimal solution – MODI method, unbalanced transportation problems, degeneracy in transportation problems. Assignment : Formulation, optimal solution, Hungarian method, travelling salesman problem.	CO1 CO2				
III	Queuing theory: Introduction, Kendall's notation, classification of	CO1				

	queuing models, single server and multi-server models, Poisson arrival,					
	exponential service, infinite population					
	Sequencing : Introduction, assumptions, processing n-jobs through two					
	machines, n-jobs through three machines, and graphic solution for					
	processing 2 jobs through n machines with different order of sequence.					
	Game Theory: Introduction, game with pure strategies, game with mixed					
	strategies, dominance principle, graphical method for 2xn and mx2					
IV	games.	CO1				
	Replacement Theory : Introduction, replacement of items that deteriorate	CO3				
	with time - value of money unchanging and changing, simple					
	probabilistic model for replacement of items that fail completely					
	Inventory control: Introduction, inventory costs, Economic Order					
	Quantity (EOQ)Demand rate Uniform and replenishment rate infinite,					
	demand rate non-uniform replenishment rate infinite, Demand rate	001				
\mathbf{V}	uniform, models with and without shortages, inventory model with single	CO1				
	price break.	CO4				
	Simulation : Definition, Types of simulation models, phases of					
	simulation, applications of simulation					

Learning Resource

Text books:

- 1. Operations Research, by S.D.Sharma, Kedarnath & Ramnath publications (15th edition),2013.
- 2. Introduction to Operations Research, by Taha, Pearson Education, New Delhi, (8th edition), 2008

Reference books

- 1. Operations Research, (4th edition) by A.M. Natarajan, P. Balasubramani, ATamilarasi, Pearson Education, New Delhi, 2009.
- 2. Operations Research, (2nd edition) by R.Pannerselvam, 2009, PHI Publications, Noida
- 3. Operations Research, (2nd edition) by Wagner, 2007, PHI Publications, Noida
- 4. Operation Research, (4th edition) by J.K.Sharma, 2009, MacMilan publishers, india Ltd. New Delhi.

E-Resources & other digital Material:

- 1. http://nptel.ac.in/courses/112106134/
- 2. http://nptel.ac.in/courses/112106131/