MATLAB PROGRAMMING

Course	20EC2601A	Year	III	Semester	II
Code					
Course	Open	Branch	ECE	Course Type	Theory
Category	Elective II				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total	100
Internal		End		Marks:	
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Outline the basic concepts of MATLAB. (L2)						
CO2	Develop programs for scientific and mathematical problems. (L3)						
CO3	Analyze an engineering system/Problem through graphical representation and numerical analysis. (L4)						
CO4	Build optimized code for various applications in Engineering and Technology.(L3)						

Mapping of course outcomes with Program outcomes (CO/PO/PSO Matrix)														
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P O 10	P O 11	P O 12	PSO 1	PSO 2
CO1	$\sqrt{}$				V					$\sqrt{}$			V	$\sqrt{}$
CO2					V								V	V
CO3		V			V								V	V
CO4	√												V	V

Syllabus						
Unit No.	Contents	Mapped CO				
I	Introduction: Starting MATLAB, Working in command window, Arithmetic operations, Display formats, Elementary Math Built-in functions, Defining scalar variables, useful commands for managing variables, Script files, Examples of MATLAB applications	CO1,CO2				
II	Creating arrays and Mathematical operations with arrays: Creating 1-dimensional and 2- dimensional arrays, The Transpose operator, Array addressing, using a colon: in addressing arrays,	CO1, CO2, CO4				

	Adding elements to existing variables, Deleting elements, Built in						
	functions for handling arrays, Strings and strings as variables,						
	Addition and Subtraction, Array Multiplication and Division,						
	Element-by-Element operations, using arrays in MATLAB built-in						
	math functions, Built in functions for analysing arrays, Generation						
	of Random Numbers, Examples of MATLAB applications.						
	Two Dimensional and Three Dimensional Plots: plot, fplot						
	commands, Formatting a plot, plots with logarithmic axes, error						
III	bars, special graphics, Histograms, Polar plots, putting multiple	CO1,CO2,					
111	plots on the same page, Multiple figure windows, Examples, Line	CO3,CO4					
	plots, Mesh and surface plots, plots with special graphics, The view						
	command, Examples of MATLAB applications						
	Programming in MATLAB: Relational and Logical operators,						
	conditional statements, The switch-case statement, Loops, Nested						
	Loops and Nested conditional statements, The break and continue	CO1 CO2					
IV	commands, creating a function file, structure of a function file,	CO1,CO2,					
	Local and Global variables, saving a function file, using a User-	CO4					
	defined function, Examples of simple User-defined functions,						
	comparison between script files and function files.						
V	Polynomial, Curve-fitting, Interpolation, Numerical Analysis:						
	Polynomials, curve fitting, Interpolation, The Basic fitting interface,	CO2 CO2					
	Examples, solving equation of one variable, Finding minimum or	CO2,CO3,					
	maximum of a function, Numerical integration, ordinary differential	CO4					
	equations.						

--

Learning Resources

Text Books

- 1. Amos Gilat MATLAB: An Introduction with applications Wiley India Pvt. Ltd, 4th Ed., 2012.
- 2. Rudra Pratap Getting started with MATLAB Oxford University Press, 2010

Reference Books

1. Agam Kumar Tyagi - MATLAB and SIMULINK for Engineers – Oxford University Press, 2012.

e- Resources & other digital material

- 1. https://www.udemy.com/MATLAB/Online-Course
- 2. https://nptel.ac.in/courses/103/106/103106118