PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous)

KANURU, VIJAYAWADA-520007

II B. Tech – II Sem CSE (AI&ML) Formal Language of Automata Theory

Course Code	20BS1403	Year	II	Semester	II
Course Category	BSC	Branch	CSE(AI&ML)	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Discrete Mathematical Structures
Continuous Internal Evaluation:	30	Semester End Examination:	70	Total Marks:	100

Course Outcomes					
Upon suc	Upon successful completion of the course, the student will be able to				
CO1	CO1 Understand the fundamental concepts of Formal Languages and Automata.				
CO2	Apply the knowledge of Automata Theory, Grammars & Regular Expressions for solving various problems.	L3			
CO3	Apply different Turing machines techniques to solve problems.	L3			
CO4	Analyze automata and their computational power to recognize languages.	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength														
of correlations (3:Substantial, 2: Moderate, 1:Slight)														
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	2													
CO2	3													
CO3	2													
CO4		2					·	·			•	1		

Syllabus							
Unit No.	Contents	Mapped CO					
	Automata: Why study Automata Theory? The central Concepts of Automata						
	Theory.						
I	Finite Automata: Deterministic Finite Automata, Non-Deterministic Finite	004					
	Automata, Finite Automata with Epsilon Transitions, Finite Automata with Outputs	CO4					
	(without conversions)						
	Regular Expressions and Languages: Regular Expressions, Finite Automata and						
	Regular Expressions, Algebraic Laws for Regular expressions (without proofs).	GO1 GO2					
II	Properties of regular Languages: Proving Languages not to be regular, Closure						
	properties of Regular Languages (without proofs), Equivalence and Minimization of						
	Automata.						
	Context-free grammars and Languages: Context-free grammars, Parse trees						
III	Ambiguity in grammars and Languages,	CO1, CO2					
	Properties of Context-free languages: Normal Forms for Context Free Grammars,	CO1, CO2					
	The Pumping Lemma for Context Free Languages	CO1, CO2,					
IV	Pushdown Automata: Definition of the Pushdown Automaton, The Languages of a PDA, Equivalence of PDA's and CFG's, Deterministic Pushdown Automaton.						
1 1	<u> </u>	CO4					
v	Turing Machines: Problems that computer cannot solve, The Turing Machine,						
	Programming Techniques for Turing Machine, Extensions to the Basic Turing	GO1 GO2					
	Machine	CO1, CO3,					
	Undecidability: Recursively Enumerable Language, Universal Turing Machines	CO4					
	(UTM), Halting Problem, Post Correspondence Problem, Church Hypothesis.						

Loo	rnina	Resources
Lea	11111112	Nesources

Text Books

- 1. Introduction to Automata Theory, Languages and Computations, J.E.Hopcroft, R.Motwani and J.D Ullman, Third Edition, Pearson Education.
- 2. Theory of Computer Science, Automata languages and computation, Mishra, Chandra Shekaran, Second Edition, PHI.

Reference Books

- 1. Introduction of the Theory and Computation, Michael Sipser, 1997, Thomson Brokecole.
- 2. Elements of The theory of Computation, H.R.Lewis and C.H.Papadimitriou, Second Edition, 2003, Pearson Education/PHI.
- 3. Formal Languages and Automata Theory, Basavari S. Anami, Karibasappa K.G, WILEYINDIA.
- 4. Introduction to Languages and the Theory of Computation, J.C.Martin, Third Edition, TMH, 2003.

e- Resources & other digital material

- 1. https://www.udemy.com/course/formal-languages-and-automata-theory-e/
- 2. https://eecs.wsu.edu/~ananth/CptS317/
- 3.https://nptel.ac.in/courses/106/103/106103070/
- 4.https://nptel.ac.in/courses/106/106/106106049/
- 5.https://nptel.ac.in/courses/111/103/111103016/
- 6.https://nptel.ac.in/courses/106/105/106105196/