PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)

KANURU, VIJAYAWADA-520007 II B.Tech -II SEM CSE(AI&ML)

Design and Analysis of Algorithms

Course Code	20AM3403	Year	II	Semester	II
Course Category	PCC	Branch	CSE(AI& ML)	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Discrete Mathematical Structures and Data Structures
Continuous Internal Evaluation :	30	Semester End Examination:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the fundamental concepts of algorithm analysis and design techniques.	L2			
CO2	Apply Divide and Conquer, Greedy techniques for solving problems.	L3			
CO3	Apply Dynamic Programming, Back Tracking and Branch and Bound techniques for solving problems.	L3			
CO4	Analyze the given problem using suitable design techniques and provide the feasible solution.	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations
(3:Substantial, 2: Moderate, 1:Slight)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3											1		
CO3		3										1		
CO4		3										1		

	Syllabus			
Unit No	Contents	Mapped CO		
Ĭ	Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solving. Fundamentals of the Analysis of Algorithm Efficiency: Analysis framework and Asymptotic Notations and Basic Efficiency Classes, Amortized Analysis. Introduction to Brute Force Technique, Exhaustive Search.	CO1,CO2		
II	Divide and Conquer: Introduction, Merge sort, Quick sort, Binary Search, Finding Maximum and Minimum, Strassen_s Matrix Multiplication.	CO1,CO2,CO4		
III	The Greedy Method: Introduction, Huffman Trees and codes, Minimum Coin Change problem, Knapsack problem, Job sequencing with deadlines, Minimum Cost Spanning Trees, Single Source Shortest paths.	CO1,CO2,CO4		
IV	Dynamic Programming : Introduction, 0/1 Knapsack problem, All pairs shortest paths, Optimal Binary search trees, Travelling salesman problem.	CO1,CO3,CO4		
V	Back Tracking: Introduction, n-Queens problem, Sum of subsets, Hamiltonian cycle. Branch and Bound: Introduction, Assignment problem, Travelling Salesman problem. Introduction to Complexity classes: P and NP Problems, NP-Complete Problems.	CO1,CO3,CO4		

Learning Resources

Text Books

- 1. Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition, 2011, Pearson Education.
- 2. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson.
- 3. Algorithm Design Techniques, Narasimha Karumanchi, CareerMonk Publications, 2018.

References

- 1. Introduction to Algorithms, <u>Thomas H. Cormen</u>, <u>Charles E. Leiserson</u>, <u>Ronald L. Rivest</u>, <u>Clifford Stein</u>, Third Edition, 2012, MIT Press.
- 2. Fundamentals of computer algorithms, Ellis Horowitz, Sartaj Sahni, S. Rajasekharan, Second Edition, 2008, Universities Press.

e-Resources and other Digital Material

- 1. https://nptel.ac.in/courses/106/106/106106131/
- 2. https://www.cmi.ac.in/~madhavan/
- 3. https://www.coursera.org/lecture/analysis-of-algorithms/resources-jMWPy
- 4. https://www.geeksforgeeks.org/fundamentals-of-algorithms/