PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

KANURU, VIJAYAWADA

Department of CSE (AI&ML)

II B.Tech – I Sem

Foundations of Competitive Programming

Course Code	20SO8357	Year	II	Semester	Ι
Course Category	ourse Category SOC1		CSE (AI&ML)	Course Type	Theory
Credits	2	L-T-P	1-0-2	Prerequisites	Programming for Problem Solving using C
Continuous Internal Evaluation :	-	Semester End Evaluation:	50	Total Marks:	50

	Syllabus – Course Contents
Week 1	 Apply time and space complexity on Pseudo code Identifying the Test cases and corner cases Exercise: https://www.interviewbit.com/courses/programming/time-complexity
Week 2	• Exercise: Fill in the missing code, Code Magnets, Be the Compiler, Crosswords, Mixed Messages, and Pool Puzzle for analysis flow of code execution.
Week 3	• Implement programs using C++ Standard Template Library (STL): Containers, Iterators, functions, Algorithms
Week 4	Apply STL to implement Vectors, Strings, Lists & Forward Lists operations
Week 5	Apply STL to implement Stacks, Queue, Maps, Unordered maps, Set operations
Week 6	 Apply all basic bitwise operators like (OR, AND, NOT, XOR, Left Shift and Right Shift) and properties of each of these operators. Bitwise operations: Get & Set bits, clear & update bits, clear range of bits, replace bits in N by M, count set bits, bit masking Exercise:https://www.hackerrank.com/domains/algorithms?filters%5Bsubdomains%5D%5B %5D=bit-manipulation
Week 7	Apply binary search concepts to solve the problems
Week 8	• Apply recursion to generating all subsets and all Permutations and Logic building of Combination sum Problem
Week 9	• Apply Strings and Pattern Matching, Rabin-Karp Algorithm, Longest Prefix Suffix and KMP & Z-Algorithm, Suffix Array, and LCP Array to solve the problems
Week 10	• Apply liked list concepts to solve Recursive Reverse a Linked List, Iterative Reverse, Merge Two Sorted Linked Lists, Merge Sort on Linked List, Search, Middle Element, K-th list, Detect Cycle in a Linked List
Week 11	 Exercise problems on Linked List: https://www.hackerrank.com/domains/datastructures?filters%5Bsubdomains%5%5B %5D=linked-lists https://www.hackerearth.com/practice/data-structures/linked- list/practice-problems/
Week 12	• Apply stacks data structures to solve Balanced Parenthesis, Redundant Parenthesis, largest Rectangle, simple text editor

Week 13	 Exercise problems on Stacks : https://www.hackerrank.com/domains/data-structures?filters%5Bsubdomains%5D%5B%5D=stacks https://www.hackerearth.com/practice/data-structures/stacks/basics-of-stacks/practice-problems/
Week 14	• Apply Queue data structures to solve Queue using two stacks, Max Subarray (Sliding Window + Deque), Simplify Path, Simplify Path Code, Stock Span Problem, First Non-Repeating Character, Simplify Path
Week 15	 Exercise problems on Queues: https://www.hackerrank.com/domains/data- structures?filters%5Bsubdomains%5D%5B%5D=queues https://www.hackerearth.com/practice/data-structures/queues/basics-of- queues/practice-problems/
Week 16	Case Study

L	Learning Resources									
Text Books										
1.	Guide to	• Competitive	Programming;	Learning	and	improving	Algorithms	Through	Contests,	Antti
	Laaksonen, Second Edition, 2020, Springer.									
2	Programming Challenges: The Programming Contact Training Manual Stayon S. Skiene, 2006, Springer									

- 2. Programming Challenges: The Programming Contest Training Manual, Steven S. Skiene, 2006, Springer.
- 3. Introduction to Algorithms, Thomas H. Cormen, Third Edition, 2009, PHI Learning Pvt. Ltd.

e-Resources & other digital material

- 1. <u>https://www.hackerrank.com</u>
- 2. <u>https://www.hackerearth.com</u>
- 3. <u>https://www.codeforces.com</u>
- 4. <u>https://www.codechef.com</u>
- 5. <u>https://www.leetcode.com</u>
- 6. <u>https://www.interviewbit.com</u>
- 7. <u>https://www.topcoder.com</u>
- 8. <u>https://www.geeksforgeeks.com</u>
- 9. <u>https://www.codewars.com</u>