ROBOTICS

Course Code	19EE4801C	Year	IV	Semester	II	
Course	e Program Pronch EEE Course		Course Type	Theory		
Category	Elective-VI	Dranch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the concepts of Robotics					
CO2	Obtain basic idea on working principle of various actuators and sensors, End Effectors					
CO3	CO3 Analyze and Design the Robot, Safety in Robotics					
CO4	Analyze the Control Hardware and Implement Robot Programming skills					
CO5	Understand the Social Issues & future applications of a robot					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation * - Average value indicates course correlation strength with mapped PO

* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2		2							1	2	1
CO2	3		2		2							1	2	1
CO3	3	2	3	2	2							1	2	1
CO4	3	3	3	2	2							1	2	1
CO5	3		2		1							1	2	1

Syllabus							
Unit	Contents	Mappe					
No.		d					
		CO					
	Fundamentals Concepts :Introduction to Robot, Classification of Robots,						
Ι	What Is Robotics, History of Robotics, Advantages and Disadvantages of						
	Robots ,Robot Components ,Robot Degrees of Freedom ,Robot Joints , Robot	CO1					
	Coordinates ,Robot Reference Frames , Programming Modes , Robot						
	Characteristics, Robot Workspace, Robot Languages, Robot Applications						
	,Other Robots and Applications						
	Robot End Effectors, Actuators: Introduction, end effectors, types of end						
	effectors, grippers and tools, Requirements and challenges of end effectors.						
II	Actuators: Electric Pneumatic, Hydraulic actuators,						
	Sensors, Vision and Signal Conditioning: Sensors Classification, Internal						
	Sources, External Sources, Vision ,Signal Conditioning, Sensor Selection						
	Robot Cell Design and control- Safety in Robotics, Robot cell layouts,						
III	Multiple Robots and machine interference, Interlocks, Workcell Controllers,						
	and Robot cycle time analysis.						
IV	Control Hardware and Robot Programming: Control Consideration,						
1 V	Hardware Architecture, Hardware for Joint Controllers, Computational Speed.	CU4					

	Robot Programming: Methods of Robot Programming, Lead through						
	Programming Methods, wait, signal and delay Commands, Branching,						
	Capabilities and Limitations of Lead through methods.						
	Social Issues and Future Applications:						
V	Social Labor Issues: Productivity and Capital Formations, Robotics and						
	Labor, Education and Training, International Impacts.						
	Future Applications: Robot Intelligence, Characteristics of future Robot						
	Tasks, Future Manufacturing Applications of robots, Service Industry and	Ind					
	Similar Applications						

Learning
Resources
Text Books
1. Introduction to Robotics: Analysis, systems and applications" by Niku. Saeed B." 2 nd edition
Wiley,2004.
2. Industrial Robotics Technology Programming and Applications by Mikell P.Groover,
McGraw-Hill Int. Edition,2012
3. S.K.Saha "Introduction to Robotics "McGraw-Hill, New Delhi,2014
Reference Books
1. Introduction to Robotics – John J. Craig, Addison Wesley
2. Robotics – K. S. Fu, Gonzalez & Hee
3. Introduction to Robotics – Saeed B.Niku, Prentice Hall
e- Resources & other digital material
1. http://nptel.ac.in/downloads/112101098/

2. http://engineering.nyu.edu/mechatronics/smart/Archive/intro_to_rob/Intro2Robotics.pdf