ROBOTICS AND ITS APPLICATIONS

Course Code	19ME4701C	Year	IV	Semester	I	
Course Category	Program Elective-IV	Branch	ME	Course Type	Theory	
Credits	3	L-T-P	3 - 0 - 0	Prerequisites	Nil	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes						
After	After successful completion of the course, the student will be able to					
CO1	Understand the basic anatomy of robots.	L2				
CO2	Solve kinematic and dynamic problems of the robot.	L3				
CO3	Develop robot program and joint trajectory for path planning.	L3				
CO4	Describe working principle of various robot sensors.	L2				
CO5	Outline the applications of robots in industry.	L2				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3					1		1				1	3	1
CO2	3	3	2									1	3	1
CO3	3	3	2									1	3	1
CO4	3											1	3	1
CO5	3					1						1	3	1

	Syllabus					
Unit No.	Contents	Mapped COs				
I	INTRODUCTION: Basic concepts - Robot anatomy - classification, robot specifications and Work volume, Types of Robot actuators-Pneumatic, Hydraulic actuators, electric and stepper motors END EFFECTORS- types of end effectors, grippers and tools, Requirements and challenges of end effectors.	CO1				
II	TRANSFORMATIONS- Homogeneous coordinates for translation and rotation MANIPULATOR KINEMATICS: D-H notation, Forward and inverse kinematics, simple problems, Dynamics- lagrangian formulation, introduction to jacobian computation.	CO2				
Ш	TRAJECTORY PLANNING: Trajectory planning with cubic polynomial, blending, higher order trajectories ROBOT PROGRAMMING: Robot language classification - programming methods - off and on-line programming - Lead through method - Teach pendent method - VAL systems and language, simple programs.	CO3				
IV	SENSORS: Sensor devices, Types of sensors - contact, position and displacement sensors, Force and torque sensors - Proximity and range	CO4				

Department of Mechanical Engineering

PVP 19

	sensors - acoustic sensors -slip sensors, Robot vision systems	
V	INDUSTRIAL APPLICATIONS: Application of robots - material handling - machine loading and unloading, assembly, inspection, welding, spray painting, Recent Developments in Robotics: mobile robot, microbots, safety considerations.	CO5

Learning Recourse(s)

Text Book(s)

- 1. Mikell P. Groover. Industrial Robotics Technology Programming and Applications, McGraw Hill Co., Singapore, 1995.
- 2. Robotics and Control / Mittal R K & Nagrath I J / TMH.2017

Reference books

- 1. Robotic Engineering by Richard D.Klafter, Prentice Hall
- 2. Introduction to Robotics Saeed B.Niku, Prentice Hall
- 3. Introduction to Robotics John J. Craig, Addison Wesley

e- Resources & other digital material

- 1. http://nptel.ac.in/downloads/112101098/
- 2. https://nptel.ac.in/courses/112/105/112105249/
- 3. https://nptel.ac.in/courses/107/106/107106090/