FINITE ELEMENT METHODS

Course Code	19ME4701B	Year	IV	Semester	I	
Course Category	Program Elective-IV	Branch	ME	Course Type	Theory	
Credits	3	L-T-P	3 - 0 - 0	Prerequisites	Nil	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes					
After successful completion of the course, the student will be able to					
CO1	Solve mechanics of solids problems by implementing numerical methods with the concepts of elasticity.	L3			
CO2	Formulate and solve axially loaded bar Problems.	L3			
CO3	Formulate and solve truss and beam problems.	L3			
CO4	Develop formulations for 2-D Problem using triangular and quadrilateral elements.	L3			
CO5	Develop formulations and solve eigen value problems.	L3			

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12						PSO1	PSO2						
CO1	3	2	1	1								2	3	1
CO2	3	3	1	1								2	3	1
CO3	3	3	1	1								2	3	1
CO4	3	3	1	1								2	3	1
CO5	3	3	1	1								2	3	1

Syllabus					
Unit No.	Contents	Mapped COs			
I	FUNDAMENTAL CONCEPTS : Historical Background of FEM, Stress and Equilibrium, Boundary conditions, Strain displacement relations, stress-strain relations, Potential energy and equilibrium, Principle of Virtual work, The Rayleigh-Ritz method.	CO1			
П	AXIALLY LOADED BARS: Finite Element Formulations, Fundamental concepts, Two node bar element, Shape functions, Formulation of stiffness matrix and Load Vectors, Assembly of element stiffness matrices and load vectors, Boundary conditions: Elimination method, Penalty Method, Temperature effects, Examples of Axially Loaded Members.				
Ш	ANALYSIS OF PLANE TRUSSES: Plane Trusses, Local and Global Coordinate systems, Element Stiffness Matrix, Stress Calculations, Example of plane Truss with three members ANALYSIS OF BEAMS: Two nodes beam Element, shape functions, element stiffness matrix and load vectors, simple problems on beams with distributed and point loads.	CO3			
IV	TWO DIMENSIONAL PROBLEMS: Finite Element Modeling,	CO4			

Department of Mechanical Engineering

PVP 19

	isoperimetric representation, Constant Strain Triangle (CST) Element	
	Stiffness, Force terms, Stress calculation, Problem modeling and boundary	
	conditions. Plane Stress and plane Strain Problems using CST Element,	
	formulation of 4-noded quadrilateral element. Problems on	
	isoperimetric formulation of 4-noded quadrilateral element, Numerical	
	integration – Gaussian Quadrature approach.	
	FINITE ELEMENTS IN STRUCTURAL DYNAMICS: Dynamic	
V	equations, eigen value problems, and their solution methods, simple problems on bar and beam.	CO5

Learning Recourse(s)

Text Book(s)

1. Introduction to Finite Elements in Engineering (revised 4th edition), by Tirupathi R. Chandrupatla, Ashok D. Belegundu, Pearson Education Limited, 2011

Reference books

- 1. Singiresu S.Rao, Finite element Method in Engineering, 5ed, Elsevier, 2012.
- 2. Reddy, J.N., Finite Element Method in Engineering, Tata McGraw Hill, 2017.

e- Resources & other digital material

1. https://nptel.ac.in/courses/112/104/112104115/