OPTIMIZATION TECHNIQUES

Course Code	19ME2701A	Year	IV	Semester	I	
Course Category	Inter Disciplinary Elective-II	Branch	Common to All	Course Type	Theory	
Credits	3	L-T-P	3 - 0 - 0	Prerequisites	Nil	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Course Outcomes						
After successful completion of the course, the student will be able to						
CO1	Apply various Classical optimization techniques					
CO2	Select suitable Numerical method for optimization of Engineering Problems.	L4				
CO3	Analyze multi stage decision making process through dynamic programming	L4				
CO4	Enumerate fundamentals of Integer programming technique	L3				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	2		2		2		2		2	2	2
CO2	2	3	3	2		2		2		2		2	2	2
CO3	2	3	3	2		2		2		2		2	2	2
CO4	2	2	3	2		2		2		2		2	2	2

	Syllabus				
Unit No.	Contents	Mapped COs			
I	Introduction to optimization: Introduction, engineering applications of optimization, statement of an optimization problem-design vector, design constraints, constraint surface, objective function, classification of optimization problems, optimization techniques. Classical Optimization techniques: Introduction, single variable optimization, multi variable optimization with no constraints, multi variable optimization with equality constraints-Lagrange multiplier method.	CO1			
II	Non-linear programming, I : One Dimensional Minimization Methods: Introduction, unimodal function, elimination methods- unrestricted search, exhaustive search, interval halving method, Fibonacci method, golden section method, interpolation method,	CO2			
III	Non-linear programming II: Direct Search Method- Nelder- Mead Simplex method, Indirect search methods- steepest descent method (Cauchy's method), Newton Method, Marquardt Method	CO2			
IV	Dynamic Programming: Multistage decision processes, Concepts of sub optimization- calculus method and tabular methods, Linear programming as a case of D.P	CO3			

Department of Mechanical Engineering

PVP 19

Integer Programming:	Introduction, Graphical Representation,	
programming, Branch-and-	method, Balas algorithm for zero-one bound method, Penalty Function method; and Exterior penalty function methods.	CO4

Learning Recourse(s)

Text Book(s)

- 1. S.S.Rao, Engineering optimization theory and practice, , 3rd Edition, New age international,2007.
- 2. Van Wylen, Fundamentals of Classical Thermodynamics, .John Wylie.

Reference books

- 1. H.A.Taha, Operations Research, , 9th Edition, Prentice Hall of India, 2010.
- 2. F.S.Hillier, and G.J.Lieberman, Introduction to Operations Research, 7th Edition, TMH, 2009.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/111/105/111105039/
- 2. https://nptel.ac.in/courses/106/108/106108056/
- 3. https://nptel.ac.in/courses/111/104/111104071/
- 4. https://nptel.ac.in/courses/112/105/112105235/