RENEWABLE ENERGY SOURCES

Course Code	19EE2701C	Year	IV	Semester	I	
Course Category	Inter Disciplinary Elective-II	Branch	Common to All	Course Type	Theory	
Credits	3	L-T-P	3 - 0 - 0	Prerequisites	Nil	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Cours	se Outcomes	Level		
After	successful completion of the course, the student will be able to			
CO1	Understand the basics of solar energy, wind energy, bio mass, geothermal energy, Ocean energy and principles of energy conversion.	L2		
CO2	Evoluin and classify instruments for measuring solar radiation solar collectors			
CO3	Analyze different types of solar collectors, solar cell, combustion characteristics of bio-gas, thermodynamic cycles, operating conditions of fuel cell.	L4		
CO4	Outline about solar radiation, power from solar module, performance characteristics of wind mill, potential and conversion techniques of tidal and wave energy, mini-hydel power plants and their economics.	L2		

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		3			2	2	1			2	2	3
CO2	3	3		1		3	3	2	1			1	3	2
CO3	3	3		3			2					1	2	2
CO4	3	2		1			1					1	3	3

	Syllabus						
Unit No.	Contents						
ı	Principles of Solar Radiation and Solar Energy Collection Role and potential of new and renewable source, the solar energy option,						
	environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled	CO 1 CO 2					
	surface, instruments for measuring solar radiation and sun shine, solar						
	radiation data. Flat plate and concentrating collectors, classification of						
	concentrating collectors, orientation and thermal analysis, advanced collectors						
	Solar Energy Storage, Applications and Photovoltaic Energy Conversion						
II	Different methods, sensible, latent heat and stratified storage, solar	CO 1					
	ponds. Solar applications solar heating/cooling technique, solar	CO 2					
	distillation and drying.	CO 3					
	Solar cell fundamentals, solar cell classification, performance of solar	CO 4					
	cell- powerfrom solar module.						

Department of Mechanical Engineering

PVP 19

	Wind Energy and Bio-Mass							
ш	Sources and potentials, horizontal and vertical axis windmills,	CO 1						
111	performancecharacteristics, Betz criteria.	CO 2						
	Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of bio-							
	gas digesters, gasyield, combustion characteristics of bio-gas, utilization							
	for cooking							
	Geothermal Energy and Ocean Energy							
	Resources, types of wells, methods of harnessing the energy, potential							
IV	in India. OTEC, principles of utilization, setting of OTEC plants,							
	thermodynamic cycles.							
	Tidal and wave energy: Potential and conversion techniques.	CO 4						
	Energy Conversion	CO 1						
V	Principles of energy conversion, MHD generators, principles, MHD							
	power generation systems. Fuel cells, principles, of fuels and operating							
	conditions, merits and demerits of different types of fuel-cells, mini-							
	hydel power plants and their economics.							

Learning Recourse(s)

Text Book(s)

- 1. Non-Conventional Energy Sources by G.D. Rai, Khanna publishers, 5th edition, 2014.
- 2. Renewable Energy Sources and Emerging Technologies by D.P Kothari, K.C Singal, Rakesh Ranjan, PHI learning Pvt Ltd, 2nd edition, 2012.

Reference books

- 1. Renewable Energy resources by Tiwari and Ghosal, publisher Narosa, 2005
- 2. Renewable Energy Resources by John Twidell and Tony Weir , publisher Taylor and Francis, 2nd edition 2006
- 3. Solar Photo Voltaics Fundamentals, Technology and application by Chetan Singh Solanki, publisher PHI learning Pvt Ltd, 3rd edition,2019
- 4. Wind Energy Theory and Practice by Siraj Ahmed publisher PHI learning Pvt Ltd ,3rd edition, 2016