NEURAL NETWORKS AND FUZZY SYSTEMS

Course Code	19IT4702E	Year	IV	Semester	Ι
Course Category	PE	Branch	IT	Course Type	Theory
Credits	3	L-T-P	3-0-0		Artificial Intelligence
Continuous Internal		Semester End			
Evaluation:	30	Evaluation:	70	Total Marks:	100

(Program Elective-V)

	Blooms Taxonomy Level		
Upon s	uccessful completion of the course, the student will be able to		
CO1	Understand types of neural networks and fuzzy logic.	L2	
CO2	Determine various Neural Network topologies and paradigms	L3	
CO3	Apply Concepts of Fuzzy Logic and Fuzzy Neural Networks	L3	

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H:High, M:Medium, L:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1											1	
CO2	1	2	2										1	
CO3	2			2			2						1	

	Syllabus					
Unit No	Contents					
Ι	Biological Neural Networks : Neuron Physiology, Neural Diversity, Specifications of the Brain, The Eye's Neural network, Areas for further Investigation.	C01				
п	Artificial Neural Networks: Concepts Neural attributes, Modelling, Basic Models of Neuron, and Learning in ANN, Characteristics of ANNs, and Important Parameters.	CO1 CO2				
III	Artificial Neural Network Topologies: Modelling ANNs, ANNs Learning andIIIProgram, Learning Algorithm, Discrimination ability, ANN adaptability, The stability-Plasticity Dilema					
IV	Neural Networks Paradigms: McCulloch-Pitts Model, The perceptron, ADALINE and MADLINE Models, Winner-Takes- All Learning Algorithm, Back Propagation Algorithm, Hop field Model.	CO1 CO2				
V	Concepts of Fuzzy Logic and Fuzzy Neural Networks : Propositional Logic, the Membership Function, Fuzzy Logic, Deffuzification of fuzzy logic, Time- dependent Fuzzy Logic, Fuzzy Artificial Neural Nework(FANN), Fuzzy Neural Example, Neuro-Fuzzy control, Some Applications.	CO1 CO3				

Learning Resources

Text Books

1. Understanding Neural Networks and Fuzzy Logic, Stamatios V.Kartalopoulos,PHI. **References**

1. Neural networks and Fuzzy Systems, Bart Kosko, PHI.

 Neural Networks and Fuzzy Logic, Vinoth KumarK, Saravana Kumar R, Sk Kataria & sons, 2010